Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Organic Flash Cycle (OFC) is suggested as a vapor power cycle that could potentially improve the efficiency of utilization of the heat source. Low and medium temperature finite thermal sources are considered in the cycle. Additionally the OFC’s aim is to reduce temperature difference during heat addition. The study examines 2 different fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC). Preliminary results show that ethanol and water are better suited for the ORC and OFC due to higher power output. Results also show that the single flash OFC achieves better efficiencies than the optimized basic ORC. Although the OFC improves the heat addition exergetic efficiency, this advantage was negated by irreversibility introduced during flash evaporation.
Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jan Wajs
Jarosław Mikielewicz
Download PDF Download RIS Download Bibtex

Abstract

For a solar photovoltaic power system on a university campus, the electricity generated by the system meets the campus load, and the extra electricity is delivered to the grid. Generally, the price of the photovoltaic system is cheaper than that of the utility power system. The full use of solar electricity can reduce the electricity cost of the school. The deep belief network is used to predict solar photovoltaic generation and electricity load, and the gap is found. According to the gap, the power loads on the campus are adjusted to improve the utilization rate of solar power generation. Through the practical application of Changqing Campus of Qilu University of Technology in China, it is found that the utilization rate of solar photovoltaic power generation effectively improved from 91.24% in 2017 to 98.16% in 2019, and the annual electricity is saved by 68 610 yuan (in 2019).
Go to article

Authors and Affiliations

Guozheng Han
1
ORCID: ORCID
Shujuan Tan
1
ORCID: ORCID
Zihan Zhang
1
ORCID: ORCID

  1. School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Changqing District, Jinan 250353 Shandong Province, PR China
Download PDF Download RIS Download Bibtex

Abstract

A new solar tracking sensor based on image recognition is proposed and designed to solve the problem of low accuracy of photoelectric tracking in photovoltaic power generation. The sensor can directly output its angular deviation from the sun, and its mechanical structure and working principle are analysed in detail. We use a high-precision camera to collect the image of the two slots on the projector surface and use the Hough transform to identify the image of the light seam. After obtaining the linear equation for the two slots, the coordinate of the intersection point is found, and the calculation of the solar altitude and azimuth can be realized. We have improved the Hough transform scheme by using the skeleton image of the slots instead of the edge image. The improvement of the scheme has been proved to effectively improve the detection accuracy. A calibration test board is used to test the sensor and experimental results show that the scheme can achieve the measurement of azimuth and altitude with the accuracy of be 0.05°, which can meet the detection accuracy requirements of the solar tracking in photovoltaic power generation and many other photoelectric tracking implementations.
Go to article

Authors and Affiliations

Jianjun Lan
1

  1. Fujian Vocational & Technical College of Water Conservancy & Electric Power, School of Electric Power Engineering, Yongan 366000, China
Download PDF Download RIS Download Bibtex

Abstract

A novelty dual-stator brushless doubly-fed generator (DSBDFG) with magneticbarrier rotor structure is put forward for application in wind power. Compared with a doublyfed induction generator, the DSBDFG has virtues of high reliability and low maintenance costs because of elimination of brush and sliprings components. Therefore, the proposed structure has tremendous potential as a wind power generator to apply in wind power. According to the operating principle of electric machine, the DSBDFG is studied in wind power application. At first, the topology, the winding connecting, the rotor structure, the power flow chart of different operating models and the variable speed capability of electric machine are discussed and analyzed. Then, a 50 kW DSBDFG is designed. Based on the principal dimension of the design electric machine, the electromagnetic characteristics of the DSBDFG with different running modes are analyzed and calculated to adopt the numerical method. From the result, it meets the requests of electromagnetic consistency and winding connecting in the design electric machine. Meanwhile, it confirms the proposed DSBDFG has the strong ability of speed regulation.
Go to article

Authors and Affiliations

Hao Liu
1
Yakai Song
1
Chunlan Bai
2
Guofeng He
1
Xiaoju Yin
3

  1. School of Electrical and Control Engineering, Henan University of Urban Construction, Longxiang Avenue, Xincheng District, Pingdingshan, China
  2. School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Longxiang Avenue, Xincheng District, Pingdingshan, China
  3. Department of Renewable Energy, Shenyang Institute of Engineering, No. 18 Puchang Road, Shenbei New District, Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the research into the design and performance analysis of a novel five-phase doubly-fed induction generator (DFIG). The designed DFIG is developed based on standard induction motor components and equipped with a five-phase rotor winding supplied from the five-phase inverter. This approach allows the machine to be both efficient and reliable due to the ability of the five-phase rotor winding to operate during single or dual-phase failure. The paper presents the newly designed DFIG validation and verification based on the finite element analysis (FEA) and laboratory tests.
Go to article

Authors and Affiliations

Roland Ryndzionek
1
ORCID: ORCID
Krzysztof Blecharz
1
ORCID: ORCID
Filip Kutt
1
ORCID: ORCID
Michał Michna
1
ORCID: ORCID
Grzegorz Kostro
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Electrical and Control Engineering, Gabriela Narutowicza str. 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Jie Dong
1
ORCID: ORCID
Xiaopeng Wu
1
ORCID: ORCID
Lei Yun
1
ORCID: ORCID
Hua Yang
1
ORCID: ORCID

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
Download PDF Download RIS Download Bibtex

Abstract

Motivated by the concepts of low carbon and environmental protection, electric vehicles have received much attention and become more and more popular all around the world. The expanding demand for electric vehicles has driven the rapid development of the charging pile industry. One of the prominent issues in charging pile industry is to determine their sites, which is a complex decision-making problem. As a matter of factor, the process of charging piles sites selection can be regarded as multi-attribute group decision-making (MAGDM), which is the main topic of this paper. The recently proposed linguistic spherical fuzzy sets (LSFSs) composed of the linguistic membership degree, linguistic abstinence degree and linguistic non-membership degree are powerful tools to express the evaluation information of decision makers (DMs). Based on the concept of LSFSs, we introduce probabilistic multi-valued linguistic spherical fuzzy sets (PMVLSFSs), which can describe DMs’ fuzzy evaluation information in a more refined and accurate way. The operation rules of PMVLSFSs are also developed in this article. To effectively aggregate PMVLSFSs, the probabilistic multi-valued linguistic spherical fuzzy power generalized Maclaurin symmetric mean operator and the probabilistic multi-valued linguistic spherical fuzzy power weighted generalized Maclaurin symmetric mean are put forward. Based on the above aggregation operators, a new method for MAGDM problem with PMVLSFSs is established. Further, a practical case of suitable site selection of charging pile is used to verify the practicability of this method. Lastly, comparative analysis with other methods is performed to illustrate the advantages and stability of proposed method.
Go to article

Authors and Affiliations

Xue Feng
1 2
ORCID: ORCID
Shifeng Liu
1
ORCID: ORCID
Wuhuan Xu
3
ORCID: ORCID

  1. School of Economics and Management, Beijing Jiaotong University, Beijing, China
  2. Beijing Logistics Informatics Research Base, Beijing, China
  3. School of Economics and Management, BeihangUniversity, Beijing, China

This page uses 'cookies'. Learn more