Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A microgrid with parallel structure operating under islanded mode is considered in this paper. Under microgrid islanded operation mode, lines bring adverse effect for power distribution between microsources (MSs). Because traditional droop control ignores this effect, MSs adopting this method can not achieve satisfactory power distribution. A kind of droop control including line compensation applied to this microgrid is proposed. It can eliminate this effect to obtain satisfactory power distribution. The relationship of two kinds of droop control with power distribution is analyzed. The reference voltage generated by droop control is applied to control output voltage of MSs. Comparison of two kinds of droop control through MATLAB/Simulink simulation is made to verify the superiority of droop control including line compensation for power distribution. The relationship between PCC voltage and output power of MSs is also presented.

Go to article

Authors and Affiliations

Dengke Gao
Jianguo Jiang
Shutong Qiao
Download PDF Download RIS Download Bibtex

Abstract

The smart grid concept is predicated upon the pervasive use of advanced digital communication, information techniques, and artificial intelligence for the current power system, to be more characteristics of the real-time monitoring and controlling of the supply/demand. Microgrids are modern types of power systems used for distributed energy resource (DER) integration. However, the microgrid energy management, the control, and protection of microgrid components (energy sources, loads, and local storage units) is an important challenge. In this paper, the distributed energy management algorithm and control strategy of a smart microgrid is proposed using an intelligent multi-agent system (MAS) approach to achieve multiple objectives in real-time. The MAS proposed is developed with co-simulation tools, which the microgrid model, simulated using MATLAB/Simulink, and the MAS algorithm implemented in JADE through a middleware MACSimJX. The main study is to develop a new approach, able to communicate a multi-task environment such as MAS inside the S-function block of Simulink, to achieve the optimal energy management objectives.

Go to article

Authors and Affiliations

Mohamed Azeroual
Tijani Lamhamdi
Hassan El Moussaoui
Hassane El Markhi
Download PDF Download RIS Download Bibtex

Abstract

Afeeder automation (FA) system is usually used by electricity utilities to improve power supply reliability. The FA system was realized by the coordinated control of feeder terminal units (FTUs) in the electrical power distribution network. Existing FA testing technologies can only test basic functions of FTUs, while the coordinated control function among several FTUs during the self-healing process cannot be tested and evaluated. In this paper, a novel cloud-based digital-physical testing method is proposed and discussed for coordinated control capacity test of the FTUs in the distribution network. The coordinated control principle of the FTUs in the local-reclosing FA system is introduced firstly and then, the scheme of the proposed cloud-based digital-physical FA testing method is proposed and discussed. The theoretical action sequences of the FTUs consisting of the FTU under test and the FTUs installed in the same feeder are analyzed and illustrated. The theoretical action sequences are compared with the test results obtained by the realized cloud-based simulation platform and the digital-physical hybrid communication interaction. The coordinated control capacity of the FTUs can be evaluated by the comparative result. Experimental verification shows that the FA function can be tested efficiently and accurately based on our proposed method in the power distribution system inspection.

Go to article

Authors and Affiliations

Guoyan Chen
Wenxiong Mo
Hongbin Wang
Jinrui Tang
Xinhao Bian
Download PDF Download RIS Download Bibtex

Abstract

The comprehensive evaluation of the smart grid is of great significance to the development of the power grid. This study mainly analyzed the coordinated planning of major networks and power distribution networks of the grid. Firstly, the coordinated planning of major networks and power distribution networks was introduced, then a comprehensive evaluation index system was established based on six domains, i.e., economy, safety, reliability, coordination, environmental protection, and automation. The evaluation of the indexes was realized through the expert scoring method. Finally, taking the power grid planning of Boao Town, Qionghai City, Hainan Province, China, as an example, the current scheme and planning scheme were evaluated. The results showed that the planning scheme had better performance in aspects such as economy and reliability, and its score was 15.39% higher than the current scheme, which verifies the effectiveness of the planning scheme and its feasible application in practical projects.
Go to article

Bibliography

[1] Perles A., Camilleri G., Croteau D., Principle and evaluation of a self-adaptive multi-agent system for state estimation of electrical distribution network, World Congress on Sustainable Technologies, London, UK (2016), DOI: 10.1109/WCST.2016.7886584.
[2] Erol-Kantarci M., Mouftah H.T., Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues, IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 179–197 (2015).
[3] Sroka K., Złotecka D., The risk of large blackout failures in power systems, Archives of Electrical Engineering, vol. 68, no. 2, pp. 411–426 (2019).
[4] Liang F., Lv X., Liu J., ZhangW., Liu X.F., Gao B.T., Evaluation of investment projects on distribution network based on fuzzy algorithms, 2015 IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China (2015), DOI: 10.1109/CYBER. 2015.7288038.
[5] Liu H.Q., Lin W.J., Li Y.C., Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020).
[6] An K., Liu H., Zhu H., Dong Z.Y., Hur K., Evaluation of conservation voltage reduction with analytic hierarchy process: a decision support framework in grid operations planning, Energies, vol. 9, no. 12, pp. 761–766 (2016).
[7] Wei Z.C., Zhao F.Z., Meng X.L., Song X.H., Ye Z.J., Sheng Y., Research on hierarchical evaluation index system of intelligent level in smart distribution grid, Advanced Materials Research, vol. 1092–1093, pp. 443–449 (2015).
[8] Cai B., Liu Y., Ma Y., Huang L., Liu Z., A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults, Energy, vol. 93, pp. 1308–1320 (2015).
[9] Xue M., Zhao B., Zhang X., Jiang Q., Integrated plan and evaluation of grid-connected microgrid, Automation of Electric Power Systems, vol. 39, no. 3, pp. 6–13 (2015).
[10] Azeroual M., Lamhamdi T., El Moussaoui H., El Markhi H., Intelligent energy management system of a smart microgrid using multiagent systems, Archives of Electrical Engineering, vol. 69, no. 1, pp. 23–38 (2020).
[11] Fadel E., Gungor V.C., Nassef L., Akkari N., Malik A., Almasri S., Akyildiz I.F., A survey on wireless sensor networks for smart grid, Computer Communications, vol. 71, no. NOV. 1, pp. 22–33 (2015).
[12] Bayindir R., Colak I., Fulli G., Demirtas K., Smart grid technologies and applications, Renewable and Sustainable Energy Reviews, vol. 66, no. DEC, pp. 499–516 (2016).
[13] Zhou X.S., Kong X.L., Ma Y.J., The Overview of Smart Grid, Applied Mechanics and Materials, vol. 552, pp. 103–106 (2014).
[14] He Y., Wu J., Ge Y., Li D.Z., Yan H.G., Research on Model and Method of Maturity Evaluation of Smart Grid Industry, International Conference on Life System Modeling and Simulation International Conference on Intelligent Computing for Sustainable Energy and Environment, vol. 763 (2017).
[15] Yang Z., Wu R., Yang J., Long K., You P., Economical Operation of Microgrid With Various Devices Via Distributed Optimization, IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 857–867 (2016).
[16] Li Y.B., Li Y., LiW.G., Application Credibility Theory in the Smart Grid Information Network Security Assessment, Advanced Materials Research, vol. 960–961, pp. 841–844 (2014).
[17] Vineetha C.P., Babu C.A., Smart grid challenges, issues and solutions, 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan (2014), DOI: 10.1109/IGBSG. 2014.6835208.
[18] Ou Q., Zhen Y., Li X., Zhang Y., Zeng L., Application of Internet of Things in Smart Grid Power Transmission, IEEE 2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing (MUSIC) – Vancouver, Canada (2012.06.26-2012.06.28) 2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent, pp. 96–100 (2012), DOI: 10.1109/MUSIC.2012.24.
[19] Chen P., Hu P., Selection of the Intelligent Power Distribution Cabinets for the Computer Room of Video Monitoring Data Center, Applied Mechanics and Materials, vol. 416–417, pp. 1076–1079 (2013).
[20] Strand J., Carson R.T., Navrud S., Ortiz-Bobea A., Vincent J., Using the Delphi method to value protection of the Amazon rainforest, Ecological Economics, vol. 131, pp. 475–484 (2017).
Go to article

Authors and Affiliations

Guangtao Ning
1
Bing Fang
1
Dan Qin
1
Yafeng Liang
1
Lijuan Zheng
2

  1. Power Grid Planning and Design Research Center, Hainan Power Grid Co., Ltd., China
  2. Tellhow Software Co., Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

As for a single line-to-ground fault in an ungrounded distribution system, the power-frequency current is too low to detect the fault. The transient current is more palpable than that at a power-frequency of 50 or 60 Hz. It is an effective method to estimate the fault using the transient fault current. To analyze and calculate the transient current of single line-to-ground faults, an equivalent circuit is proposed in this paper. This model is based on distributed parameters of power lines. And it contains positive, negative and zero sequence information. The transient equivalent circuit consists of equivalent resistance, equivalent inductance and equivalent capacitance. And the method of calculation the equivalent ele- ments is also submitted.MATLAB simulation results showthat the newtransient equivalent circuit has higher accuracy and stronger adaptability compared with the traditional one.

Go to article

Authors and Affiliations

Jun Jiang
Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Currently, overhead lines dominate in the Polish medium and low voltage distribution networks. Maintaining their high reliability constitutes a very important challenge, especially under the severely changing climate conditions. An overhead power line exposed to high ice and rime loads has been considered. Using the finite element method (FEM), mechanical reliability of the distribution infrastructure was examined under various atmospheric conditions. Loads under the stressful conditions of rime, ice and wind were determined for the weakest section of the 30 kV overhead line, which consisted of concrete poles and ACSR conductors. SAIDI and SAIFI reliability indices and costs were determined for several variants of object reconstruction. The results allowed for determination of a solution relying on relocating the cables of all lateral branches and main line ice protection, through a system based on a weather-coordinated increase of the electrical load. To verify the solution proposed, a field experiment was conducted. The experiment confirmed the effectiveness of the solution proposed that appears to be universal. The paper is a result of synergic cooperation of two academic teams, i.e. a mechanical and electrical power engineering one, and the distribution system operator (DSO).

Go to article

Authors and Affiliations

W. Ciesielka
A. Gołaś
K. Szopa
W. Bąchorek
M. Benesz
A. Kot
S. Moskwa
P. Zydroń
Download PDF Download RIS Download Bibtex

Abstract

The power distribution internet of things (PD-IoT) has the complex network architecture, various emerging services, and the enormous number of terminal devices, which poses rigid requirements on substrate network infrastructure. However, the traditional PD-IoT has the characteristics of single network function, management and maintenance difficulties, and poor service flexibility, which makes it hard to meet the differentiated quality of service (QoS) requirements of different services. In this paper, we propose the software-defined networking (SDN)- enabled PD-IoT framework to improve network compatibility and flexibility, and investigate the virtual network function (VNF) embedding problem of service orchestration in PD-IoT. To solve the preference conflicts among different VNFs towards the network function node (NFV) and provide differentiated service for services in various priorities, a matching-based priorityaware VNF embedding (MPVE) algorithm is proposed to reduce energy consumption while minimizing the total task processing delay. Simulation results demonstrate that MPVE significantly outperforms existing matching algorithm and random matching algorithm in terms of delay and energy consumption while ensuring the task processing requirements of high-priority services.
Go to article

Bibliography

[1] Z. Zhou, J. Bai, Z. Sheng, ”A Stackelberg Game Approach for Energy Management in Smart Distribution Systems with Multiple Microgrids”, in IEEE ISADS 2015 workshop on Smart Grid Communications and Networking Technologies. Taiwan, China, 2015.
[2] A. Dadashzade, F. Aminifar, M. Davarpanah, ”Unbalanced Source Detection in Power Distribution Networks by Negative Sequence Apparent Powers”, IEEE Trans. Power Deliv. 36(5), 481-483 (2021).
[3] Z. Lv, W. Xiu, ”Interaction of Edge-Cloud Computing Based on SDN and NFV for Next Generation IoT”, IEEE Internet Things J. 7 (4), 5706-5712 (2020) .
[4] Z. Zhou, X. Chen, B. Gu, ”Multi-Scale Dynamic Allocation of Licensed and Unlicensed Spectrum in Software-Defined HetNets”, IEEE Netw. 33 (6), 9-15 (2019).
[5] G. Wang, S. Zhou, S. Zhang, Z. Niu, X. Shen, ”SFC-Based Service Provisioning for Reconfigurable Space-Air-Ground Integrated Networks”, IEEE J. Sel. Areas Commun. 38 (3), 1478-1489 (2020) .
[6] J. Li, W. Shi, N. Zhang, X. Shen, ”Delay-Aware VNF Scheduling: A Reinforcement Learning Approach With Variable Action Set”, IEEE Trans. Cogn. Commun. Netw. 7 (2), 304-318 (2021).
[7] G. Faraci, G. Schembra, ”An Analytical Model to Design and Manage a Green SDN/NFV CPE Node” IEEE Trans. Netw. Service Manag. 12 (4), 435-450 (2015).
[8] B. R.Al-Kaseem, ”Al-Raweshidy, H.S. SD-NFV as an Energy Efficient Approach for M2M Networks Using Cloud-Based 6LoWPAN Testbed”, IEEE Internet Things J. 4 (2), 1787-1797 (2017).
[9] Z. Zhou, J. Gong, Y. He, Y. Zhang, ”Software Defined Machineto- Machine Communication for Smart Energy Management”, IEEE Commun. Mag. 55(7), 52-60 ( 2017).
[10] C. Mouradian, N. T. Jahromi, R. H.Glitho, ”NFV and SDN-Based Distributed IoT Gateway for Large-Scale Disaster Management”, IEEE Internet Things J., 5 (2), 4119-4131 ( 2018).
[11] L. You, B. Tuncer, R. Zhu, H. Xing, C. Yuen, ”A Synergetic Orchestration of Objects, Data and Services to Enable Smart Cities”, IEEE Internet Things J. 6(2), 10496-10507 ( 2019).
[12] B. Cheng, S. Hou, M.Wang, S. Zhao, J. Chen, ”HSOP: A Hybrid Service Orchestration Platform for Internet-Telephony Networks”, IEEE/ACM Trans. Netw. 28 (5), 1102-1115 (2020).
[13] G. Castellano, F. Esposito, F. Risso, ”A Service-Defined Approach for Orchestration of Heterogeneous Applications in Cloud/Edge Platforms”, IEEE Trans. Netw. Service Manag. 16(3), 1404-1418 (2019).
[14] B. Kar, E. H.-K.Wu, Y. D .Lin, ”Energy cost optimization in dynamic placement of virtualized network function chains”, IEEE Trans. Netw. Service Manag. 15 (4), 372–386 (2018).
[15] M. M.Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, B. Akbari, ”Joint Energy Efficient and QoS-Aware Path Allocation and VNF Placement for Service Function Chaining”, IEEE Trans. Netw. Serv. 16 (6), 374-388 (2019) .
[16] L. Ruiz, et al. ”Genetic Algorithm for Holistic VNF-Mapping and Virtual Topology Design”, IEEE Access. 8 (3), 55893-55904 (2020).
[17] K. S. Ghaia, S. Choudhurya, A. Yassineb, ”A stable matching based algorithm to minimize the end-to-end latency of edge nfv”, Procedia Computer Science. 151 (9), 377-384 (2019).
[18] C. Pham, N. H.Tran, C. S. Hong, ”Virtual Network Function Scheduling: A Matching Game Approach”, IEEE Commun. Lett. 22 (5), 69-72 (2018) .
[19] C. Pham, N. H.Tran, S. Ren, W. Saad, C. S. Hong, ”Traffic-Aware and Energy-Efficient vNF Placement for Service Chaining: Joint Sampling and Matching Approach”, IEEE Trans. Serv. Comput. 13 (9), 172-185 (2020).
[20] Z. Zhou et al. Context-Aware Learning-Based Resource Allocation for Ubiquitous Power IoT. IEEE Internet Things Mag. 4(1), 46-52 (2020) .
[21] Z. Zhou, H. Liao, H. Zhao, B. Ai, M. Guizani, ”Reliable Task Offloading for Vehicular Fog Computing Under Information Asymmetry and Information Uncertainty”, IEEE Trans. Veh. Technol.68 (6), 8322-8335 (2019).
[22] Z. Xu, X. Zhang, S. Yu, J. Zhang, ”Energy-Efficient Virtual Network Function Placement in Telecom Networks”, in 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 2018.
[23] M. C. Luizelli, L. R. Bays, L. S.Buriol, M. P. Barcellos, L. P. Gaspary, ”Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions”, in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 2015.
[24] X. Fei, F. Liu, H. Xu, H. Jin, ”Adaptive VNF Scaling and Flow Routing with Proactive Demand Prediction”, in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, HI, USA, 2018.
[25] M. Chen, Y. Hao, ”Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network”, IEEE J. Sel. Areas Commun. 36 (2), 587-597 (2018).
[26] D. Yuan, X. Yang, Y. Jiang, Y. Meng, ”An Energy-Delay Trade-Off in Wireless Visual Sensor Networks Based on Two-Sided Matching”, IEEE Sensors J. 19 (6), 10099-10110 (2019).
[27] J. Xu, M. Li, J. Fan, X. Zhao, Z. Chang, ”Self-Learning Super- Resolution Using Convolutional Principal Component Analysis and Random Matching”, IEEE Trans. Multimedia21 (5), 1108-1121 (2018)
Go to article

Authors and Affiliations

Xiaoyue Li
1
Xiankai Chen
1
Chaoqun Zhou
1
Zilong Liang
1
Shubo Liu
1
Qiao Yu
1

  1. State Grid Qingdao Power Supply Company, China

This page uses 'cookies'. Learn more