Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the corrosion properties of Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy were investigated as a function of the cold rolling ratio and annealing temperature. The annealing treatment was carried out at temperature of 680°C, 730°C, and 780°C. The highest corrosion potential observed in the specimen with a 10% rolling ratio was 179 mV, which was more positive than that of the non-rolled specimen (–0.214 Vssc). The lowest corrosion current density (1.30×10–8 A/cm2) was observed in the non-rolled specimen which suggested that the integrity of its passive oxide layer was superior to that of the cold-rolled specimens. Time-dependent EIS evaluation revealed that the consistency of the passive oxide layer was highly affected by the subjected rolling ratio over time.

Go to article

Authors and Affiliations

Hocheol Song
Ahmad Zakiyuddin
Sinhye Kim
Kwangmin Lee
Download PDF Download RIS Download Bibtex

Abstract

The corrosion inhibition behaviour of 1-Ethyl-3-methylimidazolium-methanesulphonate (EMIM[MS]) and 1-Ethyl-3-methylimidazolium acetate (EMIM[Ac]) on API 5L X-52 carbon steel in 2 M HCl was investigated using weight loss, potentiodynamic polarization and electrochemical impedance methods. The corrosion rates of carbon steel decreased in the presence of these ionic liquids. The inhibition efficiencies of the compounds increased with concentration and showed a marginal decrease with a 10°C increase in temperature. Polarization studies showed the compounds to be mixed type inhibitors with stronger anodic character. The adsorption mechanism of both compounds on the metal surface was via physical adsorption and the process obeyed the El-Awardy kinetic-thermodynamic model. The associated activation energy of corrosion and other thermodynamic parameters were calculated to elaborate on the thermodynamics and mechanism of the corrosion inhibition process. EMIM[MS] was found to inhibit the corrosion of carbon steel better than EMIM[Ac] and is attributed to the presence of the highly electronegative sulphur atom in its structure and its larger molecular size.

Go to article

Authors and Affiliations

Magdalene Edet Ikpi
Okama Ebri Obono
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, many α/β interface boundaries formed after aging treatment at 450°C, which acted as inhibitors of strain and caused an increase in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10–8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Gunhee Lee
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work was to determine the influence of the microstructural evolution of copper single crystals with the initial orientations of <001> and <111> after cold drawing on their corrosion resistance. Transmission electron microscopy, X-ray diffraction, and electron backscattering diffraction were used to characterize the microstructural changes. To evaluate the corrosion resistance after deformation, open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization analyses were conducted. The microstructural observations showed the presence of dislocation cell structures and shear bands in deformed sample with initial orientation <001> single crystal, as well as a strongly-developed substructure in sample <111>. The material with initial orientation of <001> was more resistive in analyzed medium than material with the initial orientation of <111>.

Go to article

Authors and Affiliations

M. Koralnik
A. Dobkowska
B. Adamczyk-Cieślak
ORCID: ORCID
J. Mizera
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10Cr10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10–4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Go to article

Authors and Affiliations

Hocheol Song
Seongi Lee
Kwangmin Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Cold spraying as a low-temperature coating deposition method is intended for thermally sensitive materials. Due to its precise temperature control, it limits the formation of structural defects, and can therefore be easily applied to spray corrosion protective coatings made from metal or metal-ceramic powders. However, the formation of pure ceramic coatings with the use of cold spraying is still not so common. Titanium dioxide is one of the most interesting ceramics due to its photocatalytic properties. Nevertheless, these types of coating materials usually work in a corrosion favoring humid atmosphere. In the presented paper, amorphous TiO2 powder was deposited onto aluminum alloys and steel substrates and then submitted to potentiodynamic corrosion tests in a 3.5 wt.% NaCl solution. The as-sprayed coating showed phase transition from amorphous TiO2 to anatase, and also revealed porosity. As a result, electrolytes penetrated the coating and caused undercoating corrosion in the tested environment of an aqueous NaCl solution. The analysis of the potentiodynamic curves showed that the presence of the coating decreased corrosion potential on both substrates. It arose from the mixed phases of TiO2, which consisted of photocathode – amorphous material and photoanode – crystalline anatase. The phase mixture induced the galvanic corrosion of metallic substrates in the presence of electrolytes. Moreover, pitting-like corrosion and coating delamination were detected in aluminium alloy and steel samples, respectively. Finally, the corrosion mechanism of the titanium dioxide coatings was characterized and described.
Go to article

Authors and Affiliations

M.M. Lachowicz
1
M. Winnicki
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Metal Forming, Welding and Metrology, 5 Lukasiewicza S tr., 50-371 Wroclaw, Poland

This page uses 'cookies'. Learn more