Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to investigate the effect of thermal stratification together with variable viscosity on free convection flow of non- Newtonian fluids along a nonisothermal semi infinite vertical plate embedded in a saturated porous medium. The governing equations of continuity, momentum and energy are transformed into nonlinear ordinary differential equations using similarity transformations and then solved by using the Runge-Kutta-Gill method along with shooting technique. Governing parameters for the problem under study are the variable viscosity, thermal stratification parameter, non-Newtonian parameter and the power-law index parameter.The velocity and temperature distributions are presented and discussed. The Nusselt number is also derived and discussed numerically.
Go to article

Authors and Affiliations

M.B.K. Moorthy
K. Senthilvadivu
Download PDF Download RIS Download Bibtex

Abstract

Deep bed filtration is an effective method of submicron and micron particle removal from the fluid stream. There is an extensive body of literature regarding particle deposition in filters, often using the classical continuum approach. However, the approach is not convenient for studying the influence of particle deposition on filter performance (filtration efficiency, pressure drop) when non-steady state boundary conditions have to be introduced. For the purposes of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. For aggregates the effect of their structure on displacement is taken into account. The possibility of particles rebound from the surface of collector or reentrainment of deposits to fluid stream is calculated by energy balanced oscillatory model derived from adhesion theory. The results show the evolution of filtration efficiency and pressure drop of filters with different internal structure described by the size of pores. The size of resuspended aggregates and volume distribution of deposits in filter were also analyzed. The model enables prediction of dynamic filter behavior. It can be a very useful tool for designing filter structures which optimize maximum lifetime with the acceptable values of filtration efficiency and pressure drop.

Go to article

Authors and Affiliations

Rafał Przekop
Leon Gradoń
Download PDF Download RIS Download Bibtex

Abstract

Aerosol filtration in fibrous filters is one of the principal methods of accurate removal of particulate matter from a stream of gas. The classical theory of depth filtration of aerosol particles in fibrous structures is based on the assumption of existing single fibre efficiency, which may be used to recalculate the overall efficiency of entire filter. Using “classical theory” of filtration one may introduce some errors, leading finally to a discrepancy between theory and experiment. There are several reasons for inappropriate estimation of the single fibre efficiency: i) neglecting of shortrange interactions, ii) separation of inertial and Brownian effects, ii) perfect adhesion of particles to the fibre, iv) assumption of perfect mixing of aerosol particles in the gas stream, v) assumption of negligible effect of the presence of neighbouring fibres and vi) assumption of perpendicular orientation of homogenous fibres in the filtration structure. Generally speaking, “classical theory” of filtration was used for characterization of the steady - state filtration process (filtration in a clean filter, at the beginning of the process) without deeper investigation of the influence of the nternal structure of the filter on its performance. The aim of this review is to outline and discuss the progress of deep-bed filtration modelling from the use of simple empirical correlations to advanced techniques of Computational Fluid Dynamics and Digital Fluid Dynamics.

Go to article

Authors and Affiliations

Rafał Przekop
Download PDF Download RIS Download Bibtex

Abstract

This article concerns fully developed laminar flow of a viscous incompressible fluid in a long composite cylindrical channel. Channel consist of three regions. Outer and inner regions are of uniform permeability and mid region is a clear region. Brinkman equation is used as a governing equation of motion in the porous region and Stokes equation is used for the clear fluid region. Analytical expressions for velocity profiles, rate of volume flow and shear stress on the boundaries surface are obtained and exhibited graphically. Effect of permeability variation parameter on the flow characteristics has been discussed.

Go to article

Bibliography

[1] A.K. Al-Hadhrami, L. Elliot, D.B. Ingham, and X. Wen. Analytical solutions of fluid flows through composite channels. Journal of Porous Media, 4(2), 2001. doi: 10.1615/JPorMedia.v4.i2.50.
[2] A.K. Al-Hadhrami, L. Elliot, D.B. Ingham, and X. Wen. Fluid flows through two-dimensional channel of composite materials. Transport in Porous Media, 45(2):281–300, 2001. doi: 10.1023/A:1012084706715.
[3] A. Haji-Sheikh and K. Vafai. Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts. International Journal of Heat and Mass Transfer, 47(8-9):1889–1905, 2004. doi: 10.1016/j.ijheatmasstransfer.2003.09.030.
[4] A.V. Kuznetsov. Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid. International Journal of Heat and Mass Transfer, 41(16):2556–2560, 1998. doi: 10.1016/S0017-9310(97)00296-2.
[5] C.Y. Wang. Analytical solution for forced convection in a semi-circular channel filled with a porous medium. Transport in Porous Media, 73(3):369–378, 2008. doi: 10.1007/s11242-007-9177-5.
[6] D.A. Nield, S.L.M. Junqueira, and J.L. Lage. Forced convection in a fluid-saturated porous medium channel with isothermal or isoflux boundaries. Journal of Fluid Mechanics, 322:201–214, 1996. doi: 10.1017/S0022112096002765.
[7] H.C. Brinkman. On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1:81–86, 1949. doi: 10.1007/BF02120318.
[8] I. Pop and P. Cheng. Flow past a circular cylinder embedded in a porous medium based on the Brinkman model. International Journal of Engineering Science, 30(2):257–262, 1992. doi: 10.1016/0020-7225(92)90058-O.
[9] K. Hooman and H. Gurgenci. A theoretical analysis of forced convection in a porous saturated circular tube: Brinkman-Forchheimer model. Transport in Porous Media, 69:289–300, 2007. doi: 10.1007/s11242-006-9074-3.
[10] K. Vafai and S.J. Kim. Forced convection in a channel filled with a porous medium: An exact solution. Journal of Heat Transfer, 111(4):1103–1106, 1989. doi: 10.1115/1.3250779.
[11] M. Kaviany. Laminar flow through a porous channel bounded by isothermal parallel plates. International Journal of Heat and Mass Transfer, 28(4):851–858, 1985. doi: 10.1016/0017-9310(85)90234-0.
[12] M. Parang and M. Keyhani. Boundary effects in laminar mixed convection flow through an annular porous medium. Journal of Heat Transfer, 109(4):1039–1041, 1987. doi: 10.1115/1.3248179.
[13] P. Vadasz. Fluid flow through heterogenous porous media in a rotating square channel. Transport in Porous Media, 12(1):43–54, 1993. doi: 10.1007/BF00616361.
[14] S. Chikh, A. Boumedien, K. Bouhadef, and G. Lauriat. Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium. International Journal of Heat and Mass Transfer, 38(9):1543–1551, 1995. doi: 10.1016/0017-9310(94)00295-7.
[15] S. Govender. An analytical solution for fully developed flow in a curved porous channel for the particular case of monotonic permeability variation. Transport in Porous Media, 64:189–198, 2006. doi: 10.1007/s11242-005-2811-1.
[16] S.K. Singh and V.K. Verma. Flow in a composite porous cylindrical channel covered with a porous layer of varaible permeability. Special Topics & Reviews in Porous Media – An International Journal, 10(3):291–303, 2019.
[17] V.K. Verma and S. Datta. Flow in a channel filled by heterogeneous porous mediuum with a linear permeability variation. Special Topics & Reviews in Porous Media – An International Journal, 3(3):201–208, 2012. doi: 10.1615/SpecialTopicsRevPorousMedia.v3.i3.10.
[18] V.K. Verma and S.K. Singh. Flow in a composite porous cylindrical channel of variable permeability covered with porous layer of uniform permeability. International Journal of Pure and Applied Mathematics, 118(2):321–334, 2018.
[19] V.K. Verma and H. Verma. Exact solutions of flow past a porous cylindrical shell. Special Topics & Reviews in Porous Media – An International Journal, 9(1):91–99, 2018. doi: 10.1615/SpecialTopicsRevPorousMedia.v9.i1.110.
[20] M. Abramowitz and I.A. Stegun. A Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York, 1972.
Go to article

Authors and Affiliations

Sanjeeva Kumar Singh
1
Vineet Kumar Verma
1

  1. Department of Mathematics and Astronomy, University of Lucknow, India.
Download PDF Download RIS Download Bibtex

Abstract

The study addresses two groups of issues occurring in modeling and experimental studies of multicomponent nonisobaric diffusion in macroporous materials. The dynamics of such processes is described in terms of systems of nonlinear partial differential equations. A method of orthogonal collocation for resolving the equations is proposed and compared with the method of lines. The second group of problems presented involves numerical simulations of diffusion in aWicke–Kallenbach diffusion cell. Such an apparatus is used in experimental studies. Particular attention is paid to diffusion in a cell closed from both sides. This is an analogue of the Duncan–Toor experiment. The effect of the number of diffusing components and their initial concentrations on the dynamics of diffusion in binary and ternary solution was studied. Hitherto unknown dynamic properties of such processes were detected and discussed.
Go to article

Bibliography

Arnold K.R., Toor H.L., 1967. Unsteady diffusion in ternary gas mixtures. AIChE J., 13, 909–914. DOI: 10.1002/aic.690130518.
Arnošt D., Schneider P., 1995. Dynamic transport of multicomponent mixtures of gases in porous solids. Chem. Eng. J., 57, 91–99. DOI: 10.1016/0923-0467(94)02900-8.
Boron D., 2020. Izobaryczna metoda stacjonarna wyznaczania współczynników dyfuzji w materiałach porowatych. Przem. Chem., 99, 785–788. DOI: 10.15199/62.2020.5.21.
Boron D., Tabis B., 2020. Udział i znaczenie przepływu lepkiego w nieizobarycznej dyfuzji gazów przez materiały porowate. Przem. Chem., 99, 1717–1716. DOI: 10.15199/62.2020.12.4.
Duncan J.B., Toor H.L., 1962. An experimental study of three component gas diffusion. AIChE J., 8, 38–41. DOI: 10.1002/aic.690080112.
Finlayson B.A., 1972. The method of weighted residuals and variational principles. Academic Press, New York. DOI: 10.1137/1.9781611973242.
Gear C.W., 1971. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, New Jersey.
Ho C.K., Webb S.W. (Eds.), 2006. Gas transport in porous media. Springer, Netherlands. DOI: 10.1007/1-4020-3962-X.
Krishna R., Wesseling J.A., 1997. The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci., 52, 861–911. DOI: 10.1016/S0009-2509(96)00458-7.
Mason E.A., Malinauskas A.P., 1983. Gas transport in porous media: The dusty gas model. Elsevier, Amsterdam.
Remick R.R., Geankoplis C.J., 1970. Numerical study of three-component gaseous diffusion equations in transition region between Knudsen and molecular diffusion. Ind. Eng. Chem. Fundam., 9, 206–210. DOI: 10.1021/i160034a003.
Remick R.R., Geankoplis C.J., 1974. Ternary diffusion of gases in capillaries in the transition region between Knudsen and molecular diffusion. Chem. Eng. Sci., 29, 1447–1455. DOI: 10.1016/0009-2509(74)80169-7.
Schiesser W.E., 1991. Numerical methods of lines integration of partial differential equations. Academic Press, San Diego.
Tabis B., Bizon K. 2020. Opracowanie metody linii do całkowania dynamiki dyfuzji wieloskładnikowej w materiałach makroporowatych. Prace Katedry Inzynierii Chemicznej i Procesowej Politechniki Krakowskiej.
Tabis B., Bizon K., 2018. Dyfuzyjny ruch masy. Dyfuzja w gazach doskonałych i płynach rzeczywistych. Wydawnictwa Politechniki Krakowskiej, Kraków.
Tabis B., Boron D., 2020. Application of the dusty gas model for determining structural parameters of porous media. Przem. Chem., 99, 888–891. DOI: 10.15199/62.2020.6.11.
Tuchlenski A., Uchytil P., Seidel-Morgenstern A., 1998. An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci., 140, 165–184. DOI: 10.1016/S0376-7388(97)00270-6.
Veldsink J.W., Versteeg G.F., van SwaaijW.M.P., 1994. An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes. J. Membr. Sci., 92, 275–291. DOI: 10.1016/0376-7388(94)00087-5.
Yang J., Cermáková J., Uchytil P., Hamel C., Seidel-Morgenstern A., 2005. Gas phase transport, adsorption and surface diffusion in a porous glass membrane. Catal. Today, 104, 344–351. DOI: 10.1016/j.cattod.2005.03.069.
Go to article

Authors and Affiliations

Katarzyna Bizon
1
ORCID: ORCID
Bolesław Tabiś
1

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland

This page uses 'cookies'. Learn more