Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a photographic analysis of the break-up of gas bubbles flowing out of the outlets of a self-aspirating disk impeller. It was found that bubbles detached from the interfacial surface most often disintegrate to form several daughter bubbles. Further in the work, the population balance model was verified for several formulas describing the bubble break-up rate. It has been found that a good fit to the experimental data is provided by the formula given by Laakkonen for 5 daughter bubbles. The possibility of using the Monte Carlo method to model the bubble break-up processwas also determined. For this method, a good agreement of results was achieved for the division into a maximum of 10 daughter bubbles. In the case of this method it was also found necessary to use the function of break-up frequency at a higher rate for smaller bubbles.

Go to article

Authors and Affiliations

Jacek Stelmach
ORCID: ORCID
Radosław Musowski
Download PDF Download RIS Download Bibtex

Abstract

The work concerns numerical simulations of a cone mill used for emulsion preparation. Hydrodynamics, power consumption and population balance are investigated for various operating conditions at high phase volume emulsions and for different rheologies. Cone mills are usually simplified as a simple gap between rotor and stator but by increasing the complexity of the geometry till it represents the commercial device identifies a wealth of additional features such as recirculation zones above (which enhance breakage) and below (which allow for coalescence) the rotor-stator gap. Two separate sets of population balance modelling constants are required to capture all the experiment results – even with the most complex geometries. Some suggestions are made for improvements and further studies will consider other rotor-stator devices.
Go to article

Authors and Affiliations

Guido Lupieri
1
Ioannis Bagkeris
1
Jo J.M. Janssen
2
Adam J. Kowalski
1

  1. Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
  2. Unilever Foods Innovation Centre, Bronland 14, 6708WH Wageningen, The Nederlands

This page uses 'cookies'. Learn more