Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results obtained from the structural re.nement of selected metals and alloys produced by severe plasticdeformation processes. Large levels of deformations were produced using four methods, which di.ered in the character and dynamics of the loading, as well as in the intensity and homogeneity oft he plastic strain .eld. Qualitative and quantitative studies of the re.ned microstructure were carried out using stereological and computer image analytical methods. Microhardness and selected mechanical properties, such as strength and yield point, were also determined.

Go to article

Authors and Affiliations

K.J. Kurzydłowski
Download PDF Download RIS Download Bibtex

Abstract

The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.

Go to article

Authors and Affiliations

I.V. Alexandrow
M.V. Zhilina
J.T. Bonarski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research results on the selection of parameters for the asymmetric rolling process of bimetallic plates 10CrMo9-10 + X2CrNiMo17-12-2. They consisted in determining the optimum parameters of the process, which would be ensured to obtain straight bands. Such deformation method introduces in the band the deformations resulting from shear stress, which affect changes in the microstructure. But their effect on the structure is more complicated than in the case of homogeneous materials. It has been shown that the introduction of asymmetric conditions into the rolling process results in greater grain refinement in the so-called hard layer. There was no negative effect on the structural changes in the soft layer observed.

Go to article

Authors and Affiliations

D. Rydz
ORCID: ORCID
B. Koczurkiewicz
G. Stradomski
T. Garstka
J. Wypart
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results obtained from a laboratory investigation conducted on material from a pressure vessel after longterm operation in the oil refinery industry. The tested material contained structural defects which arose from improper heat treatment during steel plate manufacturing. Complex tensile tests with acoustic emission signal recording were conducted on both notched and unnotched specimens. The detailed analysis of different acoustic emission criteria allowed as to detect each stage of plastic deformation and microstructural damage processes after a long-term operation, and unused carbon steels during quasi-static axial tension testing. The acoustic emission activity, generated in the typical stages of material deformation, was correlated by microscopy observations during the tensile test. The results are to be used as the basis for new algorithms for the assessment of the structural condition of in-service pressure equipment.

Go to article

Authors and Affiliations

I. Lyasota
Ł. Sarniak
P. Kustra
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, the effects of the subsequent extrusion after multi-pass equal-channel angular pressing (ECAP) process on the mechanical properties and microstructure of WE43 magnesium alloy are investigated. First, second and fourth passes ECAP followed by an extrusion process are applied on WE43 magnesium alloy to refine the microstructure and to improve the mechanical properties for biomedical applications. The results showed that among the ECAPed samples, the highest and lowest strength were obtained in the second and the first pass processed samples, respectively. The four passes processed sample showed the highest elongation to failure with moderate strength. The sample processed via first pass ECAP followed by extrusion exhibits an excellent combination of ductility and strength. The highest strength was obtained in the sample processed via the second pass ECAP followed by extrusion while the highest elongation was achieved in the sample processed via fourth pass ECAP followed by extrusion. Moreover, Vickers micro-indentation tests demonstrate that hardness is enhanced by an increase in the number of ECAP passes. Furthermore, a grain refinement process is presented for ECAP processing of WE43 alloy which shows a good agreement with microstructural investigations.

Go to article

Authors and Affiliations

A. Torkian
G. Faraji
M. Karimpour
Download PDF Download RIS Download Bibtex

Abstract

The forming limit of AZ31 alloy, a representative Mg-Al-Zn-based wrought alloy, and the effect of severe plastic deformation (SPD) by examining the microstructure change caused by dynamic recrystallization led by high temperature and high dislocation density at 300℃ using a biaxial alternate forging (BAF) were investigated in this study. As a result of BAF test for AZ31 Mg alloy, significant cracks on the ends of workpieces occurred after 7 passes. The microstructure of as-extruded specimen showed the non-uniform distribution of the relatively coarse grains and the fine grains considered to be sub-grains. However, as the number of passes increases, the area of coarse grains gradually disappeared and the fine grains became more dominant in the microstructures. The result of tensile test for workpieces with each forging pass showed an increase in strength depending on pass number was shown with a slight increase of elongation. The Electron Backscatter Diffraction (EBSD) results exhibited that, the microstructure showed the presence of coarse grains and twins after only 1 pass, while the grains appeared to be significantly refined and uniformly distributed after 3 pass, at which the strength and elongation began to increase, simultaneously.
Go to article

Authors and Affiliations

Young-Chul Shin
1
ORCID: ORCID
Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Molding & Metal Forming R&D Department, 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The as-cast microstructure of ductile cast iron (DI) was investigated using light microscopy (LM) and SEM techniques. Further the influence of hot plastic extrusion at 1000°C with plastic strain in the range of 20-60-80% on the transformation of the as-cast microstructure and on the mechanical properties was studied. Besides this, the microstructure of DI subjected to hot extrusion after the fracture of the corresponding samples induced by compression tests was thoroughly investigated. It was found that compression had a dramatic influence on a shear deformation and hence shear fracture of the compressed samples. It was shown that the shear fracture of the hot deformed ductile iron is accompanied by the occurrence of a narrow zone of severe plastic deformation. The fracture surfaces of the extruded samples subjected to the tensile tests and the compression tests were examined.
Go to article

Authors and Affiliations

A.S. Chaus
1
ORCID: ORCID
Ľ. Čaplovič
1
ORCID: ORCID
A.I. Pokrovskii
2
ORCID: ORCID
R. Sobota
1
ORCID: ORCID

  1. Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
  2. National Academy of Sciences of Belarus, Physical Technical Institute, 10. Kuprevicha Str., Minsk, 220141 Belarus
Download PDF Download RIS Download Bibtex

Abstract

This study was undertaken to investigate the effect of severe plastic deformation (SPD) by extrusion combined with reversible torsion (KoBo) method on microstructure and mechanical properties of Al-5Cu and Al-25Cu alloys. The extrusion combined with reversible torsion was carried out using reduction coefficient of λ = 30 and λ = 98. In this work, the microstructure was characterized by light microscopy (LM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Compression test and tensile test were performed for deformed alloys. The binary Al-5Cu and Al-25Cu alloys consist of the face cantered cubic (FCC) α phase in the form of dendrites and tetragonal (C16) θ-Al2Cu intermetallic phase observed in interdentritic regions. The increase of Cu content leads to increase of interdentritic regions. The microstructure of the alloys is refined after applying KoB deformation with λ = 30 and λ = 98. Ultimate Tensile Strength (UTS) of Al-5Cu alloy after KoBo deformation with λ = 30 and λ = 98 reached about 200 MPa. UTS for samples of Al-25Cu with λ = 30 and λ = 98 increased compared to Al-5Cu alloy and exceed 320 MPa and 270 MPa respectively. All samples showed increase of plasticity with increase of reduction coefficient. Independently of reduction coefficient, the compressive strain of Al-5Cu alloys is about 60%. The Al-25Cu alloy with λ = 98 showed the value of compressive strain exceed 60%, although for this same alloy but with λ = 30, the compressive strain is only 35%.

Go to article

Authors and Affiliations

K. Rodak
A. Brzezińska
J. Sobota
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized  40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after an axisymmetric compression test, where grains of an average diameter of d = 13 µm were obtained.

Go to article

Authors and Affiliations

I. Bednarczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper gives an introduction to nanostructuring techniques used for industrial fabrication of bulk nanocrystalline metals – basic

materials utilized in shaping nanoscale structures. Nanostructured metals, called nanometals, can be produced by severe plastic deformation (SPD). We give an expert coverage of current achievements in all important SPD methods and present future industry developments and research directions including both batch and continuous processes. In the laboratories of both WUT and UOS we have developed industry standard equipment and machinery for nanometals processing. Utilizing the latest examples from our research, we provide a concise introduction to the field of mass production of nanometals for nanotechnology.

Go to article

Authors and Affiliations

L. Olejnik
A. Rosochowski
Download PDF Download RIS Download Bibtex

Abstract

The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure.

Go to article

Authors and Affiliations

A. Urbańczyk-Gucwa
A. Brzezińska
K. Rodak
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the author derives theoretical formulae for calculating of squeezing forces. This report is the first one concerning the method of forming stepped shafts by longitudinal cold rolling. The formulae of the radial squeezing forces for the final passage of longitudinal rolling were calculated under the Huber hypothesis of plastic deformation and maximum shear stress.

Go to article

Authors and Affiliations

Marek Kowalik
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties of the pipeline samples that had been cut in annular and axial directions were investigated. The methodology of modeling and calculation of the real stress-strain state was described. The stable state during in the deformation process was defined. The results of the experimental researches were used as a test variant during examination of pipe strength.

Go to article

Authors and Affiliations

Jerzy Małachowski
Volodymyr Hutsaylyuk
Petr Yukhumets
Roman Dmitryenko
Grigorii Beliaiev
Ihor Prudkii
Download PDF Download RIS Download Bibtex

Abstract

To form the fine micro-structures, the Pr17Fe78B5 magnet powders were produced in the optimized gas atomization conditions and it was investigated that the formation of the textures, microstructures, and the changes in the magnetic properties with increasing the deformation temperatures and rolling directions. Due to the rapid cooling system than the casting process, the homogenous microstructures were composed of the Pr-rich and Pr2Fe14B without any oxides and α-Fe and enables grain refinement. The pore ratios were 2.87, 1.42, and 0.22% at the deformation temperatures of 600, 700, 800°C, respectively in the rolled samples to align the c-axis which is the magnetic easy axis. Because Pr-rich phase cannot flow into the pore with a liquid state at low temperature, the improvement of pore densification was gradually observed with increasing deformation temperature. To confirm the magnetic decoupling effects of Pr2Fe14B phases by Pr-rich phases, the magnetic properties were investigated in rolled samples produced at the deformation temperature of 800°C. Although the remanent field is slightly decreased by 30%, the coercivity fields increased by about 2 times than that previous casted ingot. It is suggested that the gas atomization method can be suitable for fabricating grain refined and pure PrFeB magnets, and the plastic deformation conditions and rolling directions are a critical role to manipulate microstructure and magnetic properties.
Go to article

Bibliography

[1] S.G. Yoon, Transfer, Super Strong Permanent Magnets, 1, UUP, Ulsan (1999).
[2] J.G. Lee, J.H. Yu, Ceramist 17 (3), 50-60 (2014).
[3] H .Y. Yasuda, M. Kumano, T. Nagase, R. Kato, H. Shimizu, Scripta Mater. 65 (8), 743-746 (2011).
[4] J.Y. Cho, S.F. Abbas, Y.H. Choa, T.S. Kim, Arch. Metall. Mater. 64 (2), 623-626 (2019).
[5] J.Y. Cho, Y.H. Choa, S. W. Nam, R. M. Zarar ,T. S. Kim, Arch. Metall. Mater. 65 (4), 1293-1296 (2020).
[6] J.H. Lee, J.Y. Cho, S.W. Nam, S.F. Abbas, K.M. Lim, T.S. Kim, Sci. Adv. Mater. 9 (10), 1859-1862 (2017).
[7] K . Akioka, O. Kobayashi, T. Yamagami, A. Arai, T. Shimoda, J. Appl. Phys. 69, 5829-5831 (1991).
[8] A.G. Popov, D.V. Gunderov, T.Z. Puzanova, G.I. Raab, Phys. Met. Metall. 103 (1), 51-57 (2007).
[9] M. Ferrante, E. Freitas, V. Sinka, Mater. Sci. Technol. 15, 501-509 (1999).
[10] H .W. Kwon, P. Bowen, I.R. Harris, J. Alloys Compd. 189, 131-137 (1992).
[11] N. Cifitci, N. Ellendt, G. Coulthard, E.S. Barreto, L. Madler, V. Uhlenwinkel, Metall. Mater. Trans. B 50, 666-677 (2019).
[12] N. Takahashi, H. Nakamura, C.R. Paik, S. Sugimoto, M. Okada, M. Homma, Mater. Trans. 32 (1), 90-92 (1991).
[13] Y. Luo, N. Zhang, proc. 10th Int. Workshop on Rare Earth Magnets and Their Application, Kyoto, 275 (1989).
Go to article

Authors and Affiliations

Ju-Young Cho
1 2
ORCID: ORCID
Myung-Suk Song
1
ORCID: ORCID
Yong-Ho Choa
2
ORCID: ORCID
Taek-Soo Kim
1 3
ORCID: ORCID

  1. Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, 156 Gaetbeol-ro (Songdo-dong), Yeonsu-Gu, Incheon 21999, Korea
  2. Hanyang University, Department of Material Science and Chemical Engineering, Ansan 15588, Korea
  3. University of Science and Technology, Critical Materials and Semi-Conductor Packaging Engineering, Daejeon 3413, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
Go to article

Authors and Affiliations

Mariusz Kulczyk
1
ORCID: ORCID
Monika Skorupska
1
Jacek Skiba
1
Sylwia Przybysz
1
Julita Smalc-Koziorowska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this scientific publication, research results of two newly developed hot-rolled Fe-Mn-Al-C (X105) and Fe-Mn-Al-Nb-Ti-C (X98) types of steel were compared. These types of steel are characterized by an average density of 6.68 g/cm³, a value 15% lower compared to conventional structural steel. Hot rolling was carried out on a semi-industrial line to evaluate the effect of hot plastic deformation conditions with different cooling variants on the structure. The detailed analysis of phase composition as well as microstructure allows us to state that the investigated steel is characterized by an austenitic-ferritic structure with carbides precipitates. The results of the transmission electron microscopy (TEM) tests of both types of steel after hot rolling showed the occurrence of various deformation effects such as shear bands, micro bands, and lens twins in the microstructure. Based on the research undertaken with the use of transmission electron microscopy, it was found that the hardening mechanism of the X98 and X105 steel is deformation-induced plasticity by the formation of shear bands (SIP) and micro shear bands (MBIP).
Go to article

Bibliography

  1.  M. Bausch, G. Frommeyer, H. Hofmann, E. Balichev, M. Soler, M. Didier, and L. Samek, Ultra high-strength and ductile FeMnAlC light- weight steels, European Commission Research Fund for Coal and Steel; Final Report Grant Agreement RFSR-CT-2006-00027, 2013.
  2.  Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima, “Microstructural control for strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys,” Mater. Sci. Eng. A, vol. 329, no. 331, pp. 680‒685, 2002.
  3.  K. Eipper, G. Frommeyer, W. Fussnegger, and A.K.W. Gerick, High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof, U.S. Patent 20070125454A1, 2002.
  4.  L. Sozańska-Jędrasik, Structure and properties of newly developed TRIPLEX high-manganese steels (title in Polish: Struktura i własności nowoopracowanych stali wysokomanganowych typu TRIPLEX), PhD. Thesis, Silesian University of Technology, Gliwice, Poland 2020, [in Polish].
  5.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and K. Matus, ”Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels,” Arch. Metall. Mater., vol. 63, no. 1, pp.  265‒276, 2018.
  6.  L. Sozańska-Jędrasik, J. Mazurkiewicz, K. Matus, and W. Borek, “Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot- Rolling,” Materials, vol. 13, no. 3, p. 739, 2020.
  7.  G. Frommeyer and U. Brüx, “Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels,” Steel Res. Int., vol. 77, no. 9‒10, pp. 627‒633, 2006.
  8.  M. Jabłońska, “Struktura i Właściwości Austenitycznej Stali Wysokomanganowej Umacnianej Wskutek Mechanicznego Bliźniakowania w Procesach Dynamicznej Deformacji,” Publishing house of the Silesian University of Technology (Wydawnictwo Politechniki Śląskiej), Gliwice, Poland, 2016, [in Polish].
  9.  S. Chen, R. Rana, A. Haldar and R.K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol.  89, pp. 345‒391, 2017.
  10.  A. Grajcar, “Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji,” STAL Metale & Nowe Technologie, vol.  7‒8, no. 10‒13, pp. 10‒13, 2013, [in Polish].
  11.  S.S. Sohn et al., “Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization,” Acta Mater., vol. 96, pp. 301‒310, 2015.
  12.  M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang and K.T. Park, “Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature,” Mater. Sci. Eng. A, vol. 586, pp. 276‒283, 2013.
  13.  U. Brüx, G. Frommeyer, and J. Jimenez, “Light-weight steels based on iron-aluminium – Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties,” Steel Res., vol. 73, no. 12, pp. 543‒548, 2002.
  14.  J.D. Yoo and K.T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Mater. Sci. Eng. A, vol. 496, no. 1‒2, pp. 417‒424, 2008.
  15.  J.D. Yoo, S.W. Hwang, and K.T. Park, “Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1520‒1523, 2009.
  16.  E. Welsch et al., “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel,” Acta Mater., vol. 116, pp. 188‒199, 2016.
  17.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, “Influence of high strain rates on the structure and mechanical properties of high- manganes austenitic TWIP-type steel,” Materialwiss. Werkstofftech., vol. 47, no. 5‒6, pp. 428‒435, 2016.
  18.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, „Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions,” Arch. Metall. Mater., vol. 61, no. 2, pp.  725‒730, 2016.
  19.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and L.A. Dobrzański, “Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24‒11 steel of TRIPLEX type,” Inżynieria Materiałowa, vol. 2, no. 216, pp. 69‒76, 2017.
  20.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 267‒279, 2010.
  21.  W. Borek, T. Tanski, Z. Jonsta, P. Jonsta, and L. Cizek, “Structure and mechanical properties of high-Mn TWIP steel after their thermo- mechanical and heat treatments” in Proc. METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 307‒313.
  22.  M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr Mo/Cr-Mo-V,” Arch. Metall. Mater., vol. 61, no. 3, pp. 969‒974, 2016.
  23.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 4, pp. 737‒741, 2017.
  24.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 913‒921, 2020.
  25.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, p. 2130, 2018.
  26.  L.A. Dobrzański and W. Borek, “Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels,” Mater. Sci. Forum, vol. 654‒656, no. 1‒3, pp. 266‒269, 2010.
  27.  M. Opiela, G. Fojt-Dymara, A. Grajcar, and W. Borek, “Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel,” Materials, vol. 13, no. 7, p. 1489, 2020.
  28.  L. Sozańska-Jędrasik, J. Mazurkiewicz, and W. Borek, “The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels,” MATEC Web Conf., vol. 252, p. 08005. 2019.
  29.  L. Sozanska-Jedrasik, J. Mazurkiewicz, W. Borek, K. Matus, B. Chmiela, and M. Zubko, “Effect of Nb and Ti micro-additives and thermo- mechanical treatment of high-manganese steel with aluminium and silicon on their microstructure and mechanical properties,” Arch. Metall. Mater., vol. 64, no. 1, pp. 133‒142, 2019.
Go to article

Authors and Affiliations

Liwia Sozańska-Jędrasik
1
Wojciech Borek
2
ORCID: ORCID
Janusz Mazurkiewicz
2

  1. Łukasiewicz Research Network–Institute for Ferrous Metallurgy, Department of Investigations of Properties and Structure of Materials, ul. K. Miarki 12-14, Gliwice 44-100, Poland
  2. Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

Microstructure and texture of the CuCr0.6 alloy processed by rolling with cyclic movement of rolls (RCMR) at room temperature were investigated. The RCMR processing was applied for the samples in different initial conditions in the solid solution followed by quenching into iced water at 1000oC for 3 h and in aging treatment conditions performed at 500oC for 2 h and at 700oC for 24 h. Application of the solution and aging processes prior to RCMR deformation results in the partial dissolution of Cr particles into the Cu matrix and precipitation of the second phase particles. RCMR processing with value of the total effective strain (εft) of 5 was introduced to the material. It was found that the RCMR method is effective in texture weakening. The obtained results revealed that there is a large similarity in texture orientations after RCMR processing independently of heat treatment conditions. Cyclic character of deformation leads to an incomplete transition of LAB to HAB.

Go to article

Authors and Affiliations

A. Urbańczyk-Gucwa
A. Brzezińska
B. Adamczyk-Cieślak
ORCID: ORCID
K. Rodak
Download PDF Download RIS Download Bibtex

Abstract

Two strength-age hardening aluminum-lithium alloys: Al-2.3wt%Li and Al-2.2wt%Li-0.1wt%Zr in two different heat treatment conditions: solution state (S) and additionally in aging state (A) were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine – grained structure. Two thermo-mechanical treatments were used: (S+A+RCMR) and (S+RCMR+A+RCMR). To investigate the combined effect of plastic deformation and heat treatment, tensile tests were performed. Microstructural observations were undertaken using scanning transmission electron microscopy (STEM), and scanning transmission electron microscopy (SEM) equipped with electron backscattering diffraction detector (EBSD). Based on the obtained results, it can be deduced that maximum mechanical properties as: yield strength (YS) and ultimate tensile strength (UTS) could be achieved when the microstructure of alloys is in (S+A+RCMR) state. For samples in (S+RCMR+A+RCMR) state, ductility is higher than for (S+A+RCMR) state. The microstructural results shows that the favourable conditions for decreasing grain size of alloys is (S+A+RCMR) state. Additionally, in this state is much greater dislocation density than for (S+RCMR+A+RCMR) state. The microstructure of alloys in (S+RCMR+A+RCMR) state is characterized by grains/subgrains with higher average diameter and with higher misorientation angles compared with (S+A+RCMR) state.

Go to article

Authors and Affiliations

A. Brzezińska
A. Urbańczyk-Gucwa
R. Molak
K. Rodak
Download PDF Download RIS Download Bibtex

Abstract

The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of multi-layered Ti/Al/Mg specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Cuboidal specimens were cut off from the plates obtained in the explosive welding method. Based on the obtained investigation results it has been found non uniform deformation of the particular layer as a result their different value of flow stress.

Go to article

Authors and Affiliations

S. Mróz
A. Stefanik
P. Szota
M. Kwapisz
M. Wachowski
ORCID: ORCID
L. Śnieżek
ORCID: ORCID
A. Gałka
Z. Szulc
Download PDF Download RIS Download Bibtex

Abstract

NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Go to article

Authors and Affiliations

Ju-Young Cho
ORCID: ORCID
Yong-Ho Choa
ORCID: ORCID
Sun-Woo Nam
ORCID: ORCID
Rasheed Mohammad Zarar
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Oxide-dispersion-strengthened high-entropy alloys were produced by hot-pressing a ball-milled mixture of Y2O3 and atomized CoCrFeMnNi powder. The effect of milling duration on grain size reduction, oxide formation behavior, and the resulting mechanical properties of the alloys was studied. Both the alloy powder size and Y2O3 particle size decreased with milling time. Moreover, the alloy powder experienced severe plastic deformation, dramatically generating crystalline defects. As a result, the grain size was reduced to ~16.746 nm and in-situ second phases (e.g., MnO2 and σ phase) were formed at the defects. This increased the hardness of the alloys up to a certain level, although excessive amounts of in-situ second phases had the reverse effect.
Go to article

Bibliography

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A. 375-377, 213-218 (2004).
[2] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743-5755 (2013).
[3] G .T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00786-7
[4] J .H. Kim, Y.S. Na, Met. Mater. Int. 25, 296-303 (2019).
[5] Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Metall. Mater. Trans. A, 45, 5300-5304 (2014).
[6] R . Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Scr. Mater. 131, 1-5 (2017).
[7] Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126, 74-80 (2017).
[8] A. Siahsarani, F. Samadpour, M.H. Mortazavi, G. Faraji, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00828-0
[9] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258-268 (2015).
[10] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[11] C.L. Chen, C.L. Huang, Met. Mater. Int. 19, 1047-1051 (2013).
[12] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Scr. Mater. 162, 477-481 (2019).
[13] L. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157, 24-29 (2018).
[14] P. He, J. Hoffmann, A. Möslang, J. Nucl. Mater. 501, 381-387 (2018).
[15] J .M. Byun, S.W. Park, Y.D. Kim, Met. Mater. Int. 24, 1309-1314 (2018).
[16] A. Patra, S.K. Karak, S. Pal, IOP Cof. Ser. Mater. Sci. Eng. 75 (012032), 1-6 (2015).
[17] S. Nam, S.E. Shin, J.H. Kim, H. Choi, Met. Mater. Int. 26, 1385- 1393 (2020).
[18] N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, Int. J. Nanomed. 6, 863-869 (2011).
[19] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[20] N. Park, B.-J. Lee, N. Tsuji, J. Alloys Compd. 719, 189-193 (2017).
[21] Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, P. Liaw, Entropy 20, 878 (2018).
[22] V. Rajkovic, D. Božić, A. Devečerski, J. Serb. Che. Soc. 72, 45-53 (2007).
[23] S.K. Vajpai, R.K. Dube, P. Chatterjee, S. Sangal, Metall. Mater. Trans. A. 43, 2484-2499 (2012).
Go to article

Authors and Affiliations

Yongwook Song
1
ORCID: ORCID
Daeyoung Kim
1
ORCID: ORCID
Seungjin Nam
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Hyunjoo Choi
1
ORCID: ORCID

  1. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea

This page uses 'cookies'. Learn more