Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the performance and frequency bandwidth of the piezoelectric energy harvester (PZEH) is improved by introducing two permanent magnets attached to the proof mass of a dual beam structure. Both magnets are in the vicinity of each other and attached in such a way to proof mass of a dual beam so that they create a magnetic field around each other. The generated magnetic field develops a repulsive force between the magnets, which improves electrical output and enhances the bandwidth of the harvester. The simple rectangular cantilever structure with and without magnetic tip mass has a frequency bandwidth of 4 Hz and 4.5 Hz, respectively. The proposed structure generates a peak voltage of 20 V at a frequency of 114.51 Hz at an excitation acceleration of 1 g (g= 9.8 m/s2 ). The peak output power of a proposed structure is 25.5 µW. The operational frequency range of a proposed dual beam cantilever with a magnetic tip mass of 30 mT is from 102.51 Hz to 120.51 Hz, i.e., 18 Hz. The operational frequency range of a dual beam cantilever without magnetic tip mass is from 104.18 Hz to 118.18 Hz, i.e., 14 Hz. There is an improvement of 22.22% in the frequency bandwidth of the proposed dual beam cantilever with a magnetic tip mass of 30 mT than the dual beam without magnetic tip mass.

Go to article

Bibliography

  1.  P. Glynne-Jones, M.J. Tudor, S.P. Beeby, and N.M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems”, Sens. Actuators, A, vol. 110, no. 1–3, pp. 344– 349, 2004, doi: 10.1016/j.sna.2003.09.045.
  2.  P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, and T.C. Green, “MEMS electrostatic micropower generator for low frequency operation”, Sens. Actuators, A,vol. 115, no. 2–3, pp. 523–529, 2004, doi: 10.1016/j.sna.2004.04.026.
  3.  P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, “Energy harvesting from human and machine motion for wireless electronic devices”, Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, 2008, doi: 10.1109/ JPROC.2008.927494.
  4.  M. Ostrowski, B. Błachowski, M. Bocheński, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Pol. Acad. Sci. Tech. Sci. vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  5.  A. Anand, S. Pal, and S. Kundu, “Multi-perforated EnergyEfficient Piezoelectric Energy Harvester Using Improved Stress Distribution”, IETE J. Res., pp. 1–16, 2021, doi: 10.1080/03772063.2021.1913071.
  6.  A. Anand, S. Naval, P.K. Sinha, N.K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure”, Microsyst. Technol., vol. 26, no. 4, pp. 1235–1252, 2020, doi: 10.1007/s00542-019-04653-3.
  7.  A. Anand, and S. Kundu, “Improvement of Output Power in Piezoelectric Energy Harvester under Magnetic Influence”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019 IEEE), 2019, pp. 382–385, doi: 10.1109/DEVIC.2019.8783607.
  8.  A. Anand and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers”, Nanomater. Energy, vol. 8, no. 2, pp. 139–150, 2019, doi: 10.1680/jnaen.19.00016.
  9.  A. Anand and S. Kundu, “Design of Mems Based Piezoelectric Energy Harvester for Pacemaker”, Proceedings of 3rd International Conference on Devices for Integrated Circuit (DevIC 2019), 2019, pp. 465–469, doi: 10.1109/DEVIC.2019.8783311.
  10.  S. Roundy, P.K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes”, Comput. Commun., vol. 26, no. 11, pp. 1131–1144, 2003, doi: 10.1016/S0140-3664(02)00248-7.
  11.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Wideband piezoelectric energy harvester design using parallel connection of multiple beams”, Int. J. Nanopart., vol. 12, no. 3, pp. 206–223, 2020, doi: 10.1504/IJNP.2020.109545.
  12.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Bandwidth Increment of Piezoelectric Energy Harvester using Multibeam Structure”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019), 2019, pp. 370–373, doi: 10.1109/ DEVIC.2019.8783724.
  13.  H. S. Kim, J. H. Kim, and J. Kim, “A review of piezoelectric energy harvesting based on vibration”, Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, 2011, doi: 10.1007/s12541-0110151-3.
  14.  K. Sokół,“Passive control of instability regions by means of piezoceramic elements”, Lat. Am. J. Solids Struct., vol. 18, no. 1, p. e320, 2021, doi: 10.1590/1679-78256015.
  15.  H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation”, Eng. Struct., vol. 24, no. 1, pp. 5–11, 2002, doi: 10.1016/S0141-0296(01)00081-5.
  16.  J. Peng, G. Zhang, M. Xiang, H. Sun, X. Wang, and X. Xie, “Vibration control for the nonlinear resonant response of a piezoelectric elastic beam via time-delayed feedback”, Smart Mater. Struct., vol. 28, no. 9, p. 095010, 2019, doi: 10.1088/1361-665X/ab2e3d.
  17.  H. Hu, Y. Han, A. Song, S. Chen, C. Wang, and Z. Wang, “A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch”, Sensors, vol. 14, no. 3, pp. 4899–4913, 2014, doi: 10.3390/s140304899.
  18.  M.F. Daqaq, R. Masana, A. Erturk, and D. Dane Quinn, “On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion”, Appl. Mech. Rev., vol. 66, no. 4, p. 040801, 2014, doi: 10.1115/1.4026278.
  19.  V.R. Challa, M.G. Prasad, Y. Shi, and F.T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability”, Smart Mater. Struct., vol. 17, no. 1, p. 015035, 2008, doi: 10.1088/0964-1726/17/01/015035.
  20.  D.A. Barton, S.G. Burrow, and L.R. Clare, “Energy harvesting from vibrations with a nonlinear oscillator”, J. Vib. Acoust., vol. 132, no. 2, 2010, doi: 10.1115/1.4000809.
  21.  S.C. Stanton, C.C. McGehee, and B.P. Mann, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting”, Appl. Phys. Lett., vol. 95, no. 17, p. 174103, 2009, doi: 10.1063/1.3253710.
  22.  A. Erturk and D.J. Inman, “Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling”, J. Sound. Vib., vol. 330, no. 10, pp. 2339–2353, 2011, doi: 10.1016/j.jsv.2010.11.018.
  23.  S. Zhou, J. Cao, A. Erturk, and J. Lin, “Enhanced broadband piezoelectric energy harvesting using rotatable magnets”, Appl. Phys. Lett., vol. 102, no. 17, p. 173901, 2013, doi: 10.1063/1.4803445.
  24.  S. Zhou, J. Cao, W. Wang, S. Liu, and J. Lin, “Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration”, Smart Mater. Struct., vol. 24, no. 5, p. 055008, 2015, doi: 10.1088/0964-1726/24/5/055008.
  25.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: modeling and experiment verification”, Appl. Energy; vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  26.  L. Haitao, Q. Weiyang, L. Chunbo, D. Wangzheng, and Z. Zhiyong, “Dynamics and coherence resonance of tristable energy harvesting system”, Smart Mater. Struct., vol. 25, no. 1, p. 015001, 2015, doi: 10.1088/0964-1726/ 25/1/015001.
  27.  J.Y. Cao, S.X. Zhou, W. Wang, and J. Lin, “Influence of potential well depth on nonlinear tristable energy harvesting”, Appl. Phys. Lett., vol. 106, no. 7, p. 173903, 2015, doi: 10.1063/1.4919532.
  28.  P. Kim and J. Seok, “A multi-stable energy harvester: dynamic modeling and bifurcation analysis”, J. Sound Vib., vol. 333, no. 21, pp. 5525–5547, 2014, doi: 10.1016/j.jsv. 2014.05.054.
  29.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sens. Actuators, A,, vol. 265, pp. 297–305, 2017, doi: 10.1016/j.sna.2017.08.039.
  30.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
  31.  D. Zhu, S. Roberts, M.J. Tudor, and S.P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro- generator”, Sens. Actuators, A,, vol. 158, no. 2, pp. 284–293, 2010, doi: 10.1016/j.sna.2010.01.002.
  32.  W.J. Su, J. Zu, and Y. Zhu, “Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester”, J. Intell. Mater. Syst. Struct., vol. 25, no. 4, pp. 430–442, 2014, doi: 10.1177/1045389X 13498315.
  33.  D. Guo, X.F. Zhang, H.Y. Li, and H. Li, “Piezoelectric Energy Harvester Array with Magnetic Tip Mass”, in ASME International Mechanical Engineering Congress and Exposition, 2015, vol. 57403, p. V04BT04A045, doi: 10.1115/IMECE201551044.
  34.  S.S. Rao, Vibration of continuous systems, John Wiley and Sons, Ltd, 2019, doi: 10.1002/9781119424284.
Go to article

Authors and Affiliations

Ashutosh Anand
1 2
ORCID: ORCID
Srikanta Pal
2
Sudip Kundu
3
ORCID: ORCID

  1. Department of Electronics and Communication Engineering, Presidency University Bangalore, India
  2. Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra Ranchi, India
  3. Department of Electronics and Communication Engineering and Center for Nanomaterials, National Institute of Technology Rourkela, India
Download PDF Download RIS Download Bibtex

Abstract

Although the study of oscillatory motion has a long history, going back four centuries, it is still an active subject of scientific research. In this review paper prospective research directions in the field of mechanical vibrations were pointed out. Four groups of important issues in which advanced research is conducted were discussed. The first are energy harvester devices, thanks to which we can obtain or save significant amounts of energy, and thus reduce the amount of greenhouse gases. The next discussed issue helps in the design of structures using vibrations and describes the algorithms that allow to identify and search for optimal parameters for the devices being developed. The next section describes vibration in multi-body systems and modal analysis, which are key to understanding the phenomena in vibrating machines. The last part describes the properties of granulated materials from which modern, intelligent vacuum-packed particles are made. They are used, for example, as intelligent vibration damping devices.
Go to article

Bibliography

  1. F.K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: A comprehensive review”, Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016, doi: 10.1016/j.rser.2015.11.010.
  2.  M.T. Todaro et al., “Piezoelectric MEMS vibrational energy harvesters: Advances and outlook”, Microelectron. Eng., vol. 183– 184, pp. 23–36, 2017, doi: 10.1016/j.mee.2017.10.005.
  3.  F. Ali, W. Raza, X. Li, H. Gul, and K.H. Kim, “Piezoelectric energy harvesters for biomedical applications”, Nano Energy, vol. 57, pp. 879–902, 2019, doi: 10.1016/j.nanoen.2019. 01.012.
  4.  M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, and M. Tahir, “Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system”, Sensors Actuators, A Phys., vol. 300, p. 111634, 2019, doi: 10.1016/j.sna.2019.111634.
  5.  N. Tran, M. H. Ghayesh, and M. Arjomandi, “Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement”, Int. J. Eng. Sci., vol. 127, pp. 162–185, 2018, doi: 10.1016/j.ijengsci.2018.02.003.
  6.  C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization”, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017, doi: 10.1016/j.rser.2017. 01.073.
  7.  T. Yildirim, M.H. Ghayesh, W. Li, and G. Alici, “A review on performance enhancement techniques for ambient vibration energy harvesters”, Renew. Sustain. Energy Rev., vol. 71, pp. 435– 449, 2017, doi: 10.1016/j.rser.2016.12.073.
  8.  H. Liu, J. Zhong, C. Lee, S.W. Lee, and L. Lin, “A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications”, Appl. Phys. Rev., vol. 5, no. 4, 2018, doi: 10.1063/1.5074184.
  9.  A. Erturk and D.J. Inman, “A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters”,  J. Vib. Acoust. Trans. ASME, vol. 130, no. 4, pp. 1–15, 2008, doi: 10.1115/1.2890402.
  10.  Y. Yang and L. Tang, “Equivalent circuit modeling of piezoelectric energy harvesters”, J. Intell. Mater. Syst. Struct., vol. 20, no. 18, pp. 2223–2235, 2009, doi: 10.1177/1045389X09351757.
  11.  L. Yu, L. Tang, and T. Yang, “Piezoelectric passive self-tuning energy harvester based on a beam-slider structure”, J. Sound Vib., vol. 489, p. 115689, 2020, doi: 10.1016/j.jsv.2020.115689.
  12.  M. Sayed, A.A. Mousa, and I. Mustafa, “Stability and bifurcation analysis of a buckled beam via active control”, Appl. Math. Model., vol. 82, pp. 649–665, 2020, doi: 10.1016/j.apm.2020.01.074.
  13.  S. Zhou, J. Cao, and J. Lin, “Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters”, Nonlinear Dyn., vol. 86, no. 3, pp. 1599–1611, 2016, doi: 10.1007/s11071-0162979-7.
  14.  H. T. Nguyen, D. Genov, and H. Bardaweel, “Mono-stable and bi-stable magnetic spring based vibration energy harvesting systems subject to harmonic excitation: Dynamic modeling and experimental verification”, Mech. Syst. Signal Process., vol. 134, p. 106361, 2019, doi: 10.1016/j.ymssp.2019.106361.
  15.  T. Huguet, A. Badel, O. Druet, and M. Lallart, “Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness”, Appl. Energy, vol. 226, pp. 607–617, 2018, doi: 10.1016/j.apenergy.2018. 06.011.
  16.  H. Wang and L. Tang, “Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling”, Mech. Syst. Signal Process., vol. 86, pp. 29–39, 2017, doi: 10.1016/j.ymssp.2016.10.001.
  17.  Y. Zhang, Y. Leng, S. Fan, “The Accurate Analysis of Magnetic Force of Bi-stable Piezoelectric Cantilever Energy Harvester”, presented at the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Cleveland, Ohio, USA, 2017, doi: 10.1115/ DETC2017-67168.
  18.  T. Tan, Z. Yan, K. Ma, F. Liu, L. Zhao, and W. Zhang, “Nonlinear characterization and performance optimization for broadband bistable energy harvester”, Acta Mech. Sin. Xuebao, vol. 36, no. 3, pp. 578–591, 2020, doi: 10.1007/s10409-020-00946-3.
  19.  K. Wang, X. Dai, X. Xiang, G. Ding, and X. Zhao, “Optimal potential well for maximizing performance of bi-stable energy harvester”, Appl. Phys. Lett., vol. 115, no. 14, 2019, doi: 10.1063/1.5095693.
  20.  V. Shah, R. Kumar, M. Talha, and J. Twiefel, “Numerical and experimental study of bistable piezoelectric energy harvester”, Integr. Ferroelectr., vol. 192, no. 1, pp. 38–56, 2018, doi: 10.1080/ 10584587.2018.1521669.
  21.  T. Yang and Q. Cao, “Dynamics and high-efficiency of a novel multi-stable energy harvesting system”, Chaos Solitons Fractals, vol. 131, p. 109516, 2020, doi: 10.1016/j.chaos.2019. 109516
  22.  Z. Zhou, W. Qin, and P. Zhu, “Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester”, Sens. Actuators, A, vol. 243, pp. 151–158, 2016, doi: 10.1016/ j.sna.2016.03.024.
  23.  M. Panyam and M.F. Daqaq, “Characterizing the effective bandwidth of tri-stable energy harvesters”, J. Sound Vib., vol. 386, pp. 336–358, 2017, doi: 10.1016/j.jsv.2016.09.022.
  24.  Y. Leng, D. Tan, J. Liu, Y. Zhang, and S. Fan, “Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation”, J. Sound Vib., vol. 406, pp. 146–160, 2017, doi: 10.1016/j.jsv.2017.06.020.
  25.  M. Lallart, S. Zhou, Z. Yang, L. Yan, K. Li, and Y. Chen, “Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters”, Appl. Energy, vol. 266, no. January, p. 114516, 2020, doi: 10.1016/ j.apenergy.2020.114516.
  26.  J. Wang and Z. Wang, “A double bi-stable energy harvester for enhanced ability of bi-stable energy harvesting from random vibration”, J. Appl. Sci. Eng., vol. 20, no. 3, pp. 387–392, 2017, doi: 10.6180/jase.2017.20.3.13.
  27.  G. Wang, W. Liao, B. Yang, X. Wang, W. Xu, and X. Li, “Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier”, Mech. Syst. Signal Process., vol. 105, pp. 427–446, 2018, doi: 10.1016/ j.ymssp.2017.12.025.
  28.  Z. Zhou, W. Qin, W. Du, P. Zhu, and Q. Liu, “Improving energy harvesting from random excitation by nonlinear flexible bistable energy harvester with a variable potential energy function”, Mech. Syst. Signal Process., vol. 115, pp. 162–172, 2019, doi: 10.1016/j.ymssp.2018.06.003.
  29.  X. Li et al., “Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier”, Results Phys., vol. 18, no. May, p. 103173, 2020, doi: 10.1016/ j.rinp.2020.103173.
  30.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: Modeling and experiment verification”, Appl. Energy, vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  31.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sensors Actuators A., vol. 265, pp. 297–305, 2017, doi: 10.1016/ j.sna.2017.08.039.
  32.  D. Huang, S. Zhou, and G. Litak, “Theoretical analysis of multistable energy harvesters with high-order stiffness terms”, Commun. Nonlinear Sci. Numer. Simul., vol. 69, pp. 270–286, 2019, doi: 10.1016/j.cnsns.2018.09.025.
  33.  C. Lan and W. Qin, “Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester”, Mech. Syst. Signal Process., vol. 85, pp. 71–81, 2017, doi: 10.1016/j.ymssp.2016.07.047.
  34.  M. Ostrowski, B. Błachowski, M. Bochen´ski, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  35.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14–15, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
Go to article

Authors and Affiliations

Xinxin Li
1
Kexue Huang
1
Zhilin Li
1
Jiangshu Xiang
1
Zhenfeng Huang
1
Hanling Mao
1
Yadong Cao
1

  1. College of Mechanical Engineering, Guangxi University, Nanning, China

This page uses 'cookies'. Learn more