Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article describes queueing systems and queueing networks which are successfully used for performance analysis of different systems such as computer, communications, transportation networks and manufacturing. It incorporates classical Markovian systems with exponential service times and a Poisson arrival process, and queueing systems with individual service. Oscillating queueing systems and queueing systems with Cox and Weibull service time distribution as examples of non-Markovian systems are studied. Jackson's, Kelly's and BCMP networks are also briefly characterized. The model of Fork-Join systems applied to parallel processing analysis and the FES approximation making possible of Fork-Join analysis is also presented. Various types of blocking representing the systems with limited resources are briefly described. In addition, examples of queueing theory applications are given. The application of closed BCMP networks in the health care area and performance evaluation of the information system is presented. In recent years the application of queueing systems and queueing networks to modelling of human performance arouses researchers' interest. Hence, in this paper an architecture called the Queueing Network-Model Human Processor is presented.

Go to article

Authors and Affiliations

B. Filipowicz
J. Kwiecień
Download PDF Download RIS Download Bibtex

Abstract

The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements.

Go to article

Authors and Affiliations

Marek Natkaniec
Łukasz Prasnal
Michał Szymakowski
Download PDF Download RIS Download Bibtex

Abstract

The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

Go to article

Authors and Affiliations

Zheshu Ma
Hua Chen
Yong Zhang
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Go to article

Authors and Affiliations

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol
Download PDF Download RIS Download Bibtex

Abstract

Driver assistance systems have started becoming a key differentiator in automotive space and all major automotive manufacturers have such systems with various capabilities and stages of implementation. The main building blocks of such systems are similar in nature and one of the major building blocks is road lane detection. Even though lane detection technology has been around for decades, it is still an ongoing area of research and there are still several improvements and optimizations that are possible. This paper offers an Optimized Dynamic Origin Technique (Optimized DOT) for lane detection. The proposed optimization algorithm of optimized DOT gives better results in performance and accuracy compared to other methods of lane detection. Analysis of proposed optimized DOT with various edge detection techniques, various threshold levels, various sample dataset and various lane detection methods were done and the results are discussed in this paper. The proposed optimized DOT lane detection average processing time increases by 9.21 % when compared to previous Dynamic Origin Technique (DOT) and 59.09 % compared to traditional hough transform.
Go to article

Authors and Affiliations

P. Maya
1
C. Tharini
1

  1. B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, India

This page uses 'cookies'. Learn more