Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Multilayered materials give a range of possibilities with regard to control of their properties through selection of layers’ materials, their thickness and the layout of layers. This research is focused on examining the behaviour of three-layer material with perforated sheet as the inner layer during the stretching and drawing process. Four remove tests were carried out: Erichsen, Engelhardt-Gross, Fukui and cup drawing test. Mechanical properties and weld quality were also determined. Sheets with four perforations were used: Po2s3, Po2s4, Po2s10 and Po2s30, which corresponds to the open area values of 34.9%, 19.6%, 3.1% and 0.35%.

Go to article

Authors and Affiliations

Ł. Kuczek
W. Muzykiewicz
M. Mroczkowski
J. Wiktorowicz
Download PDF Download RIS Download Bibtex

Abstract

Perforated sheets are materials which – maintaining good mechanical properties – are characterized by reduced mass in comparison to full sheets. Their elastic properties are important features that are considered in the context of these materials’ design applications. Compared to full sheets, they are characterized by reduced mass while simultaneously preserving good strength properties. This article presents an experimental and numerical analysis of the effect of key parameters of the hole mesh (open area, hole diameter and orientation relative to the direction of greatest hole concentration) in association with the type of material and sheet thickness �� on the value of the effective Young’s modulus of perforated sheet. A significant influence of open area (the share of holes in the sheet, as a percentage) and orientation angle was determined. On the basis of experimental results and computer simulations, a mathematical dependency allowing for calculation of this parameter’s valuewas proposed. The average deviation of calculated values from experimental is less than 4%.
Go to article

Authors and Affiliations

Łukasz Kuczek
1
ORCID: ORCID
Wacław Muzykiewicz
1
ORCID: ORCID
Marcin Mroczkowski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Cracow, Poland

This page uses 'cookies'. Learn more