Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents optimisation of a measuring probe path in inspecting the prismatic parts on a CMM. The optimisation model is based on: (i) the mathematical model that establishes an initial collision-free path presented by a set of points, and (ii) the solution of Travelling Salesman Problem (TSP) obtained with Ant Colony Optimisation (ACO). In order to solve TSP, an ACO algorithm that aims to find the shortest path of ant colony movement (i.e. the optimised path) is applied. Then, the optimised path is compared with the measuring path obtained with online programming on CMM ZEISS UMM500 and with the measuring path obtained in the CMM inspection module of Pro/ENGINEERĀ® software. The results of comparing the optimised path with the other two generated paths show that the optimised path is at least 20% shorter than the path obtained by on-line programming on CMM ZEISS UMM500, and at least 10% shorter than the path obtained by using the CMM module in Pro/ENGINEERĀ®.

Go to article

Authors and Affiliations

Slavenko M. Stojadinovic
Vidosav D. Majstorovic
Numan M. Durakbasa
Tatjana V. Sibalija
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an autonomous obstacle avoidance method combining improved A-star (A*) and improved artificial potential field (APF) to solve the planning and tracking problems of autonomous vehicles in a road environment. The A*APF algorithm to perform path planning tasks, and based on the longitudinal braking distance model, a dynamically changing obstacle influence range is designed. When there is no obstacle affecting the controlled vehicle, the improved A* algorithm with angle constraint combined with steering cost can quickly generate the optimal route and reduce turning points. If the controlled vehicle enters the influence domain of obstacle, the improved artificial potential field algorithm will generate lane changing paths and optimize the local optimal locations based on simulated annealing. Pondering the influence of surrounding participants, the four-mode obstacle avoidance process is established, and the corresponding safe distance condition is analyzed. A particular index is introduced to comprehensively evaluate speed, risk warning, and safe distance factors, so the proposed method is designed based on the fuzzy control theory. In the tracking task, a model predictive controller in the light of the kinematics model is devised to make the longitudinal and lateral process of lane changing meet comfort requirements, generating a feasible autonomous lane-change path. Finally, the simulation was performed in the Matlab/Simulink and Carsim combined environment. The proposed fusion path generation algorithm can overcome the shortcomings of the traditional single method and better adapt to the dynamic environment. The feasibility of the obstacle avoidance algorithm is verified in the three-lane simulation scenario to meet safety and comfort requirements.
Go to article

Authors and Affiliations

Yubin Qian
1
ORCID: ORCID
Hongtao Sun
1
ORCID: ORCID
Song Feng
1
ORCID: ORCID

  1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

The main goal of robot path planning is to design an optimal path for a robot to navigate from its starting point to its goal while avoiding obstacles and optimizing certain criteria. A novel method using marine predator algorithm which is used in the field of robot path planning is presented. The proposed method has two steps. First step is to build a mathematical model of path planning while second step is optimization process using marine predator algorithm. Simulation results show that the proposed method works well and has good performance in different situations. Therefore, this method is an effective method for robot path planning and related applications.
Go to article

Authors and Affiliations

Qiang Wang
1
Yinghui Huang
2

  1. College of Electronic and ElectricalEngineering, Bengbu University, Bengbu 233030, China
  2. College of Computer and Information Engineering, Bengbu University, Bengbu233030, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper we propose a sensor-based navigation method for navigation of wheeled mobile robot, based on the Kohonen self-organising map (SOM). We discuss a sensor-based approach to path design and control of wheeled mobile robot in an unknown 2-D environment with static obstacles. A strategy of reactive navigation is developed including two main behaviours: a reaching the middle of a collision-free space behaviour, and a goal-seeking behaviour. Each low-level behaviour has been designed at design stage and then fused to determine a proper actions acting on the environment at running stage. The combiner can fuse low-level behaviours so that the mobile robot can go for the goal position without colliding with obstacles one for the convex obstacles and one for the concave ones. The combiner is a softswitch, based on the idea of artificial potential fields, that chooses more then one action to be active with diRerent degrees at each time step. The output of the navigation level is fed into a neural tracking controller that takes into account the dynamics of the mobile robot. The purpose of the neural controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. Computer simulation has been conducted to illustrate the performance of the proposed solution by a series of experiments on the emulator of wheeled mobile robot Pioneer-2DX.

Go to article

Authors and Affiliations

Z. Hendzel
Download PDF Download RIS Download Bibtex

Abstract

In global path planning (GPP), an autonomous underwater vehicle (AUV) tracks a predefined path. The main objective of GPP is to generate a collision free sub-optimal path with minimum path cost. The path is defined as a set of segments, passing through selected nodes known as waypoints. For smooth planar motion, the path cost is a function of the path length, the threat cost and the cost of diving. Path length is the total distance travelled from start to end point, threat cost is the penalty of collision with the obstacle and cost of diving is the energy expanse for diving deeper in ocean. This paper addresses the GPP problem for multiple AUVs in formation. Here, Grey Wolf Optimization (GWO) algorithm is used to find the suboptimal path for multiple AUVs in formation. The results obtained are compared to the results of applying Genetic Algorithm (GA) to the same problem. GA concept is simple to understand, easy to implement and supports multi-objective optimization. It is robust to local minima and have wide applications in various fields of science, engineering and commerce. Hence, GA is used for this comparative study. The performance analysis is based on computational time, length of the path generated and the total path cost. The resultant path obtained using GWO is found to be better than GA in terms of path cost and processing time. Thus, GWO is used as the GPP algorithm for three AUVs in formation. The formation follows leader-follower topography. A sliding mode controller (SMC) is developed to minimize the tracking error based on local information while maintaining formation, as mild communication exists. The stability of the sliding surface is verified by Lyapunov stability analysis. With proper path planning, the path cost can be minimized as AUVs can reach their target in less time with less energy expanses. Thus, lower path cost leads to less expensive underwater missions.

Go to article

Authors and Affiliations

Madhusmita Panda
Bikramaditya Das
Bibhuti Bhusan Pati

This page uses 'cookies'. Learn more