Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results concerning the use of clustering methods to identify signals of acoustic emission (AE) generated by partial discharge (PD) in oil-paper insulation. The conducted testing featured qualitative analysis of the following clustering methods: single linkage, complete linkage, average linkage, centroid linkage and Ward linkage. The purpose of the analysis was to search the tested series of AE signal measurements, deriving from three various PD forms, for elements of grouping (clusters), which are most similar to one another and maximally different than in other groups in terms of a specific feature or adopted criteria. Then, the conducted clustering was used as a basis for attempting to assess the effectiveness of identification of particular PD forms that modelled exemplary defects of the power transformer’s oil-paper insulation system. The relevant analyses and simulations were conducted using the Matlab estimation environment and the clustering procedures available in it. The conducted tests featured analyses of the results of the series of measurements of acoustic emissions generated by the basic PD forms, which were obtained in laboratory conditions using spark gap systems that modelled the defects of the power transformer’s oil-paper insulation.
Go to article

Authors and Affiliations

Sebastian Borucki
Jacek Łuczak
Dariusz Zmarzły
Download PDF Download RIS Download Bibtex

Abstract

Partial discharges (PD) are influencing electrical insulating systems of high voltage electrical devices. Typically, in laboratory and diagnostics AC tests focused on measuring and analysis of PD, a pure sinusoidal voltage waveform is assumed. However, in practice the spectral content of the working voltage is rarely so ideal and additional spectral components have a significant impact on the discharge behaviour in electrical insulation systems. In this paper the influence of voltage harmonics on PD behaviour and phase-resolved PD patterns evolution is analysed. The presented experiments were conducted on a specimen representing a gaseous inclusion embedded in electrical insulation. The experimental results showed that various harmonic compositions superimposed on the fundamental sinusoidal waveform have a significant impact on PD intensity and maximum charge. In consequence, the derived patterns of PD phase, and magnitude distributions are distorted, and statistical parameters calculated on their basis are changed. In certain en- vironments, neglecting harmonic content in the testing voltage may lead to a misleading interpretation and assessment of PD severity.
Go to article

Authors and Affiliations

Marek Florkowski
Barbara Florkowska
Paweł Zydroń
Download PDF Download RIS Download Bibtex

Abstract

The article presents the application of Acoustic Emission (AE) method for detection and registration of partial discharges (PD) generated in medium voltage (MV) cable isolation and MV cable head. The insulation of the high voltage cable is made of a flexible material whose properties are characterised by a high coefficient of attenuation of the acoustic signals. For this reason, the AE method has not been used so far to detect PD in energetic cables. The subjects of the research were the MV cable and the standard T-type cable head. The cable contained defects which were the source of partial discharges. In case of cable head the PD were provoked by thin grounded electrode which was introduced into connector opening. The results of AE measurements are presented in the form of spectrograms. Acoustic Emission was evoked when the applied voltage level reached the value of 7.5 kV for the cable and 4 kV for the cable head. The authors used the acoustic instrumentation of their own design intended for future field use. Obtaining successful results of partial discharges measurements using the acoustic method in the cable insulation makes an original contribution of the presented work.
Go to article

Authors and Affiliations

Zbigniew Ranachowski
1
ORCID: ORCID
Krzysztof Wieczorek
2
Przemysław Ranachowski
1
Tomasz Dębowski
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  2. Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the assumptions, characteristics and description of the implementation of a pilot system for on-line monitoring of partial discharges in heads of the high-voltage cable lines. The main purpose of the implementation was to increase the reliability of cable line heads by equipping them with a system of continuous assessment of technical condition with direct transmission of measurement data and alarms to the SCADA system. In order to achieve the assumed goal, unconventional methods for measuring partial discharges were used, the application of which does not require disconnecting the line from the voltage. The implementation was carried out on an active 110 kV high voltage cable line in the area of activity of one of the Distribution System Operators.

Go to article

Authors and Affiliations

Michał Konarski
Paweł Węgierek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the use of new methods of detecting faults in medium-voltage overhead lines built of covered conductors. The methods mainly address such faults as falling of a conductor, contacting a conductor with a tree branch, or falling a tree branch across three phases of a medium-voltage conductor. These faults cannot be detected by current digital relay protection systems. Therefore, a new system that can detect the above mentioned faults was developed. After having tested its operation, the system has already been implemented to protect mediumvoltage overhead lines built of covered conductors.

Go to article

Authors and Affiliations

Stanislav Mišák
Štefan Hamacek
Mikołaj Bartłomiejczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents comparative analysis of various acoustic signals expected during partial discharge (PD) measurements in operating power transformer. Main purpose of the paper is to yield relevant and reliable method to distinguish between various acoustic emission (AE) signals emitted by PD and other sources, with particular consideration of real-life results rather than laboratory simulations. Therefore, selected examples of real-life AE signals registered in seven different power transformers, under normal operation conditions, within few years are showed and analyzed. Five scenarios are investigated, which represent five types of AE sources: PD generated by artificial sources, and next four real-life sources (including PD in working transformer, oil flow, oil pumps and core). Several different signal processing methods are applied and compared in order to identify the PD signals. As a result, an energy patterns analysis based on the wavelet decomposition is found as the most reliable tool for identification of PD signals. The presented results may significantly support the process of interpretation of the PD measurement results, and may be used by field engineers as well as other researchers involved in PD analysis using AE method. Finally, observed properties also provide a solid basis for establishing or improving complete classification method based on the artificial intelligence algorithms.

Go to article

Authors and Affiliations

Michał Kunicki
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.

Go to article

Authors and Affiliations

Michał Kunicki
Download PDF Download RIS Download Bibtex

Abstract

Variable speed and low voltage electrical drives are commonly operated by frequency converters. According to recent developments, there is a trend in the area of semi-conductors, that switching frequency and voltage slew rate will increase significantly. The aim of these semiconductors is to reduce the switching losses and to increase the switching frequency, which enables to reduce the size of passive components in the power- electric circuit. This results in less material effort and lower cost, for the power electronic component. However, electric motors operated by high slew rate inverters show problems in the winding insulation, which have to be analyzed. Such problems are well known for high voltage machines. Due to the increasing slew rate, this problematic occurs in low voltage machines nowadays as well. Here, the influence of fast switching semiconductors on the winding insulation system is studied, using accelerated ageing tests with fast switching high-voltage generators.

Go to article

Authors and Affiliations

Florian Pauli
Andreas Ruf
Kay Hameyer
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

An integration of the electrical machine and the gearbox is attracting particular attention for the design of modern electric and hybrid drive trains, since it saves overall space and subsequently increases the power density. Another benefit of a high level of integration is that it enables a combined application of oils as both cooling fluid for the electrical machine and as lubrication fluid for the transmission system. In this way, the power density of the integrated drive train can be further increased. During the oil cycling, conductive contaminations may be introduced and subsequently have an influence on the function of the insulation system of the electrical machine. In the present work, the influences of the cooling oil and its conductive contaminations, conductive particles as well as their combination with humidity, on the electrical and dielectric properties of the insulation system are studied. The results show that by application of the cooling oil, the partial discharge inception voltage (PDIV) of the winding insulation increases significantly so that an electrical breakdown is prone to happen before a partial discharge (PD) occurs. With increasing particle contamination, the PDIV of the insulation system decreases significantly, while the capacitance increases. Besides, conductive particles and humidity decrease the surface resistance and surface breakdown voltage of the insulation papers significantly. The results indicate that the conductive particle contaminations can play an important role for the electrical degradation of the insulation system.
Go to article

Bibliography

[1] Lehmann R., Petuchow A., Moullion M., Künzler M., Windel C., Gauterin F., Fluid Choice Based on Thermal Model and Performance Testing for Direct Cooled Electric Drive, Energies, vol. 13, no. 22, 5867 (2020), DOI: 10.3390/en13225867.
[2] Popescu M., Staton D.A., Boglietti A., Cavagnino A., Hawkins D., Goss J., Modern heat extraction systems for power traction machines – A review, IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2167–75 (2016), DOI: 10.1109/TIA.2016.2518132.
[3] Tighe C., Gerada C., Pickering S., Assessment of cooling methods for increased power density in electrical machines, 2016 XXII international conference on electrical machines (ICEM), Lausanne, Switzerland, pp. 2626–2632 (2016), DOI: 10.1109/ICELMACH.2016.7732892.
[4] Ponomarev P., Polikarpova M., Pyrhönen J., Thermal modeling of directly-oil-cooled permanent magnet synchronous machine, 2012 XXth International Conference on Electrical Machines, Marseille, France, pp. 1882–1887 (2012), DOI: 10.1109/ICElMach.2012.6350138.
[5] Dan M., Hao J., Qin W., Liao R., Zou R., Mengzhao Z., Liang S., Effect of different impurities on motion characteristics and breakdown properties of insulation oil under DC electrical field, 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, pp. 1–4 (2018), DOI: 10.1109/ICHVE.2018.8642256.
[6] Popescu M., Goss J., Staton D.A., Hawkins D., ChongY.C., Boglietti A., Electrical vehicles—Practical solutions for power traction motor systems, IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2751–62 (2018), DOI: 10.1109/TIA.2018.2792459.
[7] McFadden C., Hughes K., Raser L., Newcomb T., Electrical conductivity of new and used automatic transmission fluids, SAE International Journal of Fuels and Lubricants, vol. 9, no. 3, pp. 519–26 (2016), DOI: 10.4271/2016-01-2205.
[8] Montonen J., Nerg J., Polikarpova M., Pyrhönen J., Integration principles and thermal analysis of an oil-cooled and-lubricated permanent magnet motor planetary gearbox drive system, IEEE Access, vol. 7, pp. 69108–18 (2019), DOI: 10.1109/ACCESS.2019.2919506.
[9] Carlo R.M., de Bruzzoniti M.C., Sarzanini C., Maina R., Tumiatti V., Copper contaminated insulating mineral oils-testing and investigations, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 2, pp. 557–63 (2013), DOI: 10.1109/TDEI.2013.6508759.
[10] Carlo R.M., de Sarzanini C., Bruzzoniti M.C., Maina R., Tumiatti V., Copper-in-oil dissolution and copper-on-paper deposition behavior of mineral insulating oils, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 2, pp. 666–73 (2014), DOI: 10.1109/TDEI.2013.004121.
[11] Antonov G.I., Working Group 17 (Particles in Oil) of Study Committee 12, Effect of particles on transformer dielectric strength, International Conference on Large High Voltage Electric Systems, Cigré, Paris, France (2000).
[12] Zhang J., Wang F., Li J., Ran H., Huang D., Influence of copper particles on breakdown voltage and frequency-dependent dielectric property of vegetable insulating oil, Energies, vol. 10, no. 7, 938 (2017), DOI: 10.3390/en10070938.
[13] Dan M., Hao J., Liao R., Cheng L., Zhang J., Li F., Accumulation behaviors of different particles and effects on the breakdown properties of mineral oil under DC voltage, Energies, vol. 12, no. 12, pp. 2301 (2019), DOI: 10.3390/en12122301.
[14] Pauli F., Ruf A., Hameyer K., Low voltage winding insulation systems under the influence of high du/dt slew rate inverter voltage, Archives of Electrical Engineering, vol. 69, no. 1, pp. 187–202 (2020), DOI: 10.24425/aee.2020.131767.
[15] Brütsch R., Chapman M., Insulating systems for high voltage rotating machines and reliability considerations, 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, pp. 1–5 (2010), DOI: 10.1109/ELINSL.2010.5549737.
[16] Dymond J.H., Stranges N., Younsi K., Hayward J.E., Stator winding failures: contamination, surface discharge, tracking, IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 577–83 (2002), DOI: 10.1109/28.993182.
[17] Rahimi M.R., Javadinezhad R., Vakilian M., DC partial discharge characteristics for corona, surface and void discharges, 2015 IEEE 11th International Conference, Sydney, NSW, Australia, pp. 260–263 (2015), DOI: 10.1109/ICPADM.2015.7295258.
[18] IEC/TR 60664-2-1: 2011 ¸ Cor.:2011, Insulation coordination for equipment within low-voltage systems – Part 2–1: Application guide – Explanation of the application of the IEC 60664 series, dimensioning examples and dielectric testing (2011).
[19] IEC 60664-1:2007, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests (2007).
[20] IEC 60172:2015, Test procedure for the determination of the temperature index of enamelled and tape wrapped winding wires (2015).
[21] IEC 60317-0-1:2013, Specifications for particular types of winding wires – Part 0–1: General requirements – Enamelled round copper wire (2013).
[22] IEC 62631-3-2:2015, Dielectric and resistive properties of solid insulation material – Part 3–2: Determination of resistive properties (DC Methods) – Surface resistance and surface resistivity (2015).
[23] Yang L., Pauli F., Hameyer K., Influence of thermal-mechanical stress on the insulation system of a low voltage electrical machine, Archives of Electrical Engineering, vol. 70, no. 1, pp. 233–44 (2021), DOI: 10.1109/ICPADM.2015.7295258.
[24] Akmal A.S., Borsi H., Gockenbach E., Wasserberg V., Mohseni H., Dielectric behavior of insulating liquids at very low frequency, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 3, pp. 532–538 (2006), DOI: 10.1109/TDEI.2006.1657965.

Go to article

Authors and Affiliations

Liguo Yang
1
ORCID: ORCID
Florian Pauli
1
Shimin Zhang
2
Fabian Hambrecht
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Aachen, Germany
  2. Lubricant Division, TotalEnergies One Tech Solaize, France
Download PDF Download RIS Download Bibtex

Abstract

Diagnostic methodologies are of fundamental importance for operational strategies of electrical devices, both in the power grid and in industrial applications. This paper reports about a novel approach based on partial discharge analysis applied to high voltage electrical insulation. Especially dynamics of charges deposited by partial discharges is explored applying a chopped sequence. The applications refer to microvoids occurring inside solid insulating systems or at the interfaces, such as delaminations at the electrodes. The experiments were carried out on embedded voids having distinctive wall dielectric materials. The underlying physical phenomena of post discharge charge transport are analyzed. The assessment is performed using phase-resolved partial discharge patterns acquired applying a chopped sequence. The chopped partial discharge (CPD) method provides quantitative insight into post discharge charge decay processes due to deposited and accumulated charges fluctuations. The assessment indicator is based on comparing partial discharge inception angle between chopped sequence and continuous run. The experiments have shown that materials with distinctive surface conductivity revealed adequately different charge decay time dynamics. The detailed analysis yields time constant of walls charge decay for insulating paper equal to 12 ms and cross-linked polyethylene 407 ms. The CPD method may be further used to investigate streamer physics inside bounded cavities in the form of voids. The presented method provides a quantitative approach for charge non-invasive decay assessment and offers high potential in future diagnostics applications.
Go to article

Bibliography

  1.  T. Tanaka and Y. Ikeda, “Internal discharges in polyethylene with an artificial cavity,” IEEE Trans. Power Apparatus Syst., vol. 90, no. 6, pp. 2692–2702, 1971.
  2.  B. Fruth and L. Niemeyer, “The importance of statistical characteristics of partial discharge data,” IEEE Trans. Electr. Insul., vol. 27, no. 1, pp. 60–69, 1992.
  3.  L. Niemeyer, “Generalized approach to partial discharge modelling,” IEEE Trans. Dielectr. Electr. Insul., vol. 2, no. 4, pp. 510–528, 1995.
  4.  H. Illias, G. Chen, and P.L. Lewin, “Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage,” IEEE Trans. Dielectr. Electr. Insul.. vol. 18, pp. 432–443, 2011, doi: 10.1109/TDEI.2011.5739447.
  5.  M.A. Saleh, S.S. Refaat, M. Olesz, H. Abu-rub, and J. Guźiński, “The effect of protrusions on the initiation of partial discharges in XLPE high voltage cables,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, 2021, doi: 10.24425/bpasts.2021.136037.
  6.  M. Florkowski, M. Kuniewski, and P. Zydroń, “Partial discharges in HVDC insulation with superimposed AC harmonics,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1875‒1882, 2020.
  7.  G.C. Crichton, P.W. Karlsson, and A. Pedersen, “partial discharges in ellipsoidal and speroidal voids,” IEEE Trans. Electr. Insul., vol. 24, no. 2, pp. 335–342, 1989.
  8.  I.W. McAllister, “Decay of charge deposited on the wall of gaseous void,” IEEE Trans. Electr. Insul., vol. 27, no. 6, pp. 1202‒1207, 1992.
  9.  T. Tanaka and M. Uchiumi, “Two kinds of decay time constants for interfacial space charge in polyethylene-laminated dielectrics,” in Proc. Conf. on Electr. Insul. Dielectri. Phenom. (CEIDP), 1999, pp.  472‒475.
  10.  T. Mizutani, Y. Taniguchi, and M. Ishioka, “Charge decay and space charge in corona-charged LDPE,” in Proc. 11th International Symposium on Electrets, 2002, pp. 15–18.
  11.  B. Florkowska, “Partial discharge measurements with computer aided system in polyethyleneterephthalate and polypropylene films,” in Proc. High voltage engineering. 8th International Symposium, Yokohama, Japan, 1993, pp. 41–44.
  12.  H.J.M. Blennow, M.L.A. Sjoberg, M.A.S. Leijon, and S.M. Gubanski, “Effects of charge accumulation in a dielecric covered electrode system in air,” in Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), 1999, pp. 484‒487.
  13.  K. Wu et al., “Contribution of surface conductivity to the current forms of partial discharges in voids,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, no.  6, pp. 1116–1124, 2005.
  14.  L.A. Dissado et al., “Decay of space charge in a glassy epoxy resin following voltage removal,” IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 4, pp. 903–916, 2006.
  15.  Y. Serdyuk and S. Gubanski, “Computer modeling of interaction of gas discharge plasma with solid dielectric barriers,” IEEE Trans. Dielectr. Electr. Insul., vol. 12, pp. 725–735, 2005, doi: 10.1109/tdei.2005.1511098.
  16.  S. Kumara, Y.V. Serdyuk, and S.M. Gubanski, “Surface charge decay on polymeric materials under different neutralization modes in air,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 5, pp. 1779–1788, 2011.
  17.  K. Wu, C. Pan, Y. Meng, Y. Cheng, and M. Ding, “Dynamic behavior of surface charge distribution during partial discharge sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 2, pp. 612–619, 2013.
  18.  M. Florkowski, B. Florkowska, P. Zydron, “Chopped Partial Discharge Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol.  22, no. 6, pp. 3451‒3458, 2015.
  19.  H.A. Illias, M.A. Tunio, A.H.A. Bakar, H. Mokhlis, and G. Chen, “Partial discharge phenomena within an artificial void in cable insulation geometry: experimental validation and simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 451–459, 2016.
  20.  J. Kindersberger and C. Lederle, “Surface charge decay on insulators in air and sulfurhexafluorid – Part I: simulation,” IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 4, pp. 941–948, 2008.
  21.  M. Florkowski, “Influence of insulating material properties on partial discharges at dc voltage,” Energies, vol. 13, p. 4305, 2020.
  22.  L. Xing, L. Weidong, X. Yuan, C. Weijiang, and B. Jiangang, “Surface charge accumulation and pre-flashover characteristics induced by metal particles on the insulator surfaces of 1100 kV GILs under AC voltage,” High Voltage, vol. 5, no. 2, pp. 134‒142, 2020.
  23.  M. Florkowski, Partial discharges in high-voltage insulating systems – mechanisms, processing, and analytics, AGH Press, Kraków, 2020.
  24.  Y. Luo et al., “Dynamics of surface charge and electric field distributions on basin-type insulator in GIS/GIL due to voltage polarity reversal,” High Voltage, vol. 5, no.  2, pp. 151‒159, 2020.
  25.  Q. Li et al., “Surface charge pattern analysis based on the field-dependent charging theory: a review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no.  1, pp. 257‒269, 2020.
  26.  C. Pan et al., “Understanding partial discharge behavior from the memory effect induced by residual charges: A review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1936‒1950, 2020, doi: 10.1109/TDEI.2020.008960.
  27.  C. Pan et al., “The effect of surface charge decay on the variation of partial discharge location,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 4, pp. 2241–2249, 2016.
  28.  M. Florkowski, B. Florkowska, and R. Włodek, “Investigations on Post Partial Discharge Charge Decay in Void Using Chopped Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 6, pp. 3831‒3838, 2017.
  29.  M. Florkowski, B. Florkowska, M. Kuniewski, and P. Zydroń, “Mapping of discharge channels in void creating effective partial discharge area,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 6, pp. 2220–2228, 2018.
  30.  G. Callender, K.F. Goddard, and P.L. Lewin, “Simulating surface charge dynamics,” IEEE Trans. Dielectr. Electr. Insul., vol. 28, no. 1, pp. 19‒27, 2021.
  31.  H. He et al., “Simulation of positive streamer propagation in an air gap with a GFRP composite barrier,” High Voltage, pp. 1–13, 2021, doi: 10.1049/hve2.12112.
Go to article

Authors and Affiliations

Marek Florkowski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the application of the hierarchical clustering methods for the classification of the acoustic emission (AE) signals generated by eight basic forms of partial discharges (PD), which can occur in paper-oil insulation of power transformers. Based on the registered AE signals from the particular PD forms, using a frequency descriptor in the form of the power spectral density (PSD) of the signal, their representation in the form of the set of points on plane XY was created. Next, these sets were subjected to analysis using research algorithms consisting of selected clustering methods. Based on the suggested numeric performance indicators, the analysis of the degree of reproduction of the actual distribution of points showing the particular time waveforms of the AE signals from eight adopted PD forms (PD classes) in the obtained clusters was carried out. As a result of the analyses carried out, the clustering algorithms of the highest effectiveness in the identification of all eight PD classes, classified simultaneously, where indicated. Within the research carried out, an attempt to draw general conclusions as to the selection of the most effective hierarchical clustering method studied and the similarity function to be used for classification of the selected basic PD forms.
Go to article

Bibliography

1. Akbari A., Setayeshmehr A., Borsi H., Gockenbach E. (2010), Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers, IEEE Electrical Insulation Magazine, 26(6): 27–40, doi: 10.1109/MEI.2010.5599977.
2. Boczar T. (2001), Identification of a specific type of PD form acoustics emission frequency spectra, IEEE Transaction on Dielectric and Electrical Insulation, 8(4): 598–606, doi: 10.1109/94.946712.
3. Boczar T., Borucki S., Cichon A., Zmarzły D. (2009), Application Possibilities of Artificial Neural Networks for Recognizing Partial Discharges Measured by the Acoustic Emission Method, IEEE Transaction on Dielectric and Electrical Insulation, 16(1): 214–223, doi: 10.1109/TDEI.2009.4784570.
4. Boczar T., Cichon A., Borucki S. (2014), Diagnostic expert system of transformer insulation systems using the acoustic emission method, IEEE Transaction on Dielectric and Electrical Insulation, 21(2): 854–865, doi: 10.1109/TDEI.2013.004126.
5. Borucki S., Boczar T., Cichon A., Lorenc M. (2007), The evaluation of neural networks application for recognizing single-source PD forms generated in paper-oil insulation systems based on the AE signal analysis, European Physical Journal Special Topics, 154: 23–29, doi: 10.1140/epjst/e2008-00512-7.
6. Borucki S., Łuczak J. (2017), Assessment of the impact of an acoustic signal power spectral density frequency selection on partial discharges basic forms classification efficiency with the use of data clustering method [in Polish: Ocena wpływu doboru czestotliwosci widmowej gestosci mocy sygnału akustycznego na efektywnosc klasyfikacji podstawowych form wyładowan niezupełnych z uzyciem metody klasteryzacji], Energetyka, 7: 448–452.
7. Borucki S., Łuczak J., Zmarzły D. (2018), Using Clustering Methods for the Identification of Acoustic Emission Signals Generated by the Selected Form of Partial Discharge in Oil-Paper Insulation, Archives of Acoustics, 43(2): 207–215, doi: 10.24425/122368.
8. Castro Heredia L.C., Rodrigo Mor A. (2019), Density-based clustering methods for unsupervised separation of partial discharge sources, International Journal of Electrical Power & Energy Systems, 107: 224–230, doi: 10.1016/j.ijepes.2018.11.015.
9. Chia-Hung L., Chien-Hsien W., Ping-Zan H. (2009), Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers, Expert Systems with Applications, 36(2, part 1): 1371–1379, doi: 10.1016/j.eswa.2007.11.019.
10. Cichon A. (2013), Assessment of technical condition of on-load tap-changers by the method of acoustic emission, [in Polish: Ocena stanu technicznego podobciazeniowych przełaczników zaczepów metoda emisji akustycznej], Studia i Monografie, No. 352, Ofic. Wyd. Politechniki Opolskiej.
11. Fuhr J. (2005), Procedure for identification and localization of dangerous partial discharge sources in power transformers, IEEE Transaction on Dielectric and Electrical Insulation, 12(5): 1005–1014, doi: 10.1109/TDEI.2005.1522193.
12. Han J., Kamber M., Pei J. (2012), Data Mining. Concepts and Techniques, 3rd ed., Morgan Kaufmann Publishers, Waltham.
13. Kapinos J., Glinka T., Drak B. (2014), Typical causes of operational failures in power transformers working in National Grid [in Polish: Typowe przyczyny uszkodzen eksploatacyjnych transformatorów energetycznych], Przeglad Elektrotechniczny, 90(1): 186–189, doi: 10.12915/pe.2014.01.45.
14. Kazmierski M., Olech W. (2013), Technical Diagnostics and Monitoring of Transformers [in Polish: Diagnostyka techniczna i monitoring transformatorów], Printing house of ZPBE Energopomiar-Elektryka Sp. z o.o., Gliwice.
15. Krzysko M., Wołynski W., Górecki T. Skorzybut M. (2008), Learning Systems – Pattern Recognition, Cluster Analysis and Dimensional Reduction [in Polish: Systemy uczace sie – rozpoznawanie wzorców, analiza skupien i redukcja wymiarowosci], Wydawnictwa Naukowo-Techniczne, Warszawa.
16. Kurtasz P. (2011), Application of a multi-comparative algorithm to classify acoustic emission signals generated by partial discharges [in Polish: Zastosowanie algorytmu multikomparacyjnego do klasyfikacji sygnałów emisji akustycznej generowanych przez wyładowania niezupełne], Ph.D. Dissertation, Opole University of Technology.
17. Lalitha E.M., Satish L. (2002),Wavelet analysis for classification of multi-source PD patterns, IEEE Transaction on Dielectric and Electrical Insulation, 7(1): 40– 47, doi: 10.1109/94.839339.
18. Ming-Shou S., Chung-Chu C., Chien-Yi C., Jiann-Fuh C. (2014), Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach, International Journal of Electrical Power & Energy Systems, 61: 173–179, doi: 10.1016/j.ijepes.2014.03.054.
19. Mohan Rao U., Sood Y.R., Jarial R.K. (2015), Subtractive Clustering Fuzzy Expert System for Engineering Applications, Procedia Computer Science, 48: 77–83, doi: 10.1016/j.procs.2015.04.153.
20. Morzy T. (2013), Data mining. Methods and Algorithms [in Polish: Eksploracja danych. Metody i algorytmy], Wydawnictwo Naukowe PWN, Warszawa.
21. Olszewska A., Witos F. (2012), Location of partial discharge sources and analysis of signals in chosen power oil transformers by means of acoustic emission method, Acta Physica Polonica A, 122(5): 921–926.
22. Radionov A.A., Evdokimov S.A., Sarlybaev A.A., Karandaeva O.I. (2015), Application of Subtractive Clustering for Power Transformer Fault Diagnostics, Procedia Engineering, 129: 22–28, doi: 10.1016/j.proeng.2015.12.003.
23. Rodrigo Mor A., Castro Heredia L.C., Muñoz F.A. (2017), Effect of acquisition parameters on equivalent time and equivalent bandwidth algorithms for partial discharge clustering, International Journal of Electrical Power & Energy Systems, 88: 141–149, doi: 10.1016/j.ijepes.2016.12.017.
24. Rubio-Serrano J., Rojas-Moreno M., Posada J., Martienez-Tarifa J., Robles G., Garcia-Souto J. (2012), Electro-acoustic detection, identification and location of PD sources in oil-paper insulation systems, IEEE Transaction on Dielectric and Electrical Insulation, 19(5): 1569–1578, doi: 10.1109/TDEI. 2012.6311502.
25. Soltani A.A., Haghjoo F., Shahrtash S.M. (2012), Compensation of the effects of electrical sensors in measuring PD signals, IET Science, Measurement &Technology, 6(6): 494–501, doi: 10.1049/iet-smt.2012.0001.
Go to article

Authors and Affiliations

Sebastian Borucki
1
Jacek Łuczak
1
Marcin Lorenc
1

  1. Opole University of Technology, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of designing and manufacturing a prototype antenna based on the PIFA (Planar Inverted F Antenna) technology for the detection of UHF signals from partial discharges occurring in the power transformer insulation system. The main objective of the simulation studies was to obtain a frequency band covering the range of radio frequencies emitted by partial discharges in oil-paper insulation (surface discharges) and to adjust the dimensions of the antenna for its installation in the inspection window of the power transformer. The proposed structure consists of a radiating element in the shape of a rectangular meandering line and an additional parasitic element in the form of a specially selected resistor connecting the reflector with the radiator. The design of the prototype antenna was tested during laboratory tests in a high-voltage laboratory using a model of a transformer tank in which partial discharges were generated. The results of the measurements showed that the developed antenna has a higher sensitivity of partial discharge detection than other popular antennas used in transformer diagnostics, i.e. the disk antenna and the Hilbert fractal antenna. Due to high sensitivity, compact and simple structure and low production costs, the proposed PIFA antenna may be an interesting alternative to the currently used commercial antennas (mainly disk antennas) in on-line monitoring systems for partial discharges of power transformers.
Go to article

Authors and Affiliations

Cyprian Szymczak
1

  1. Poznan University of Technology, Institute of Electric Power Engineering, Piotrowo 3A, 60-965 Poznan
Download PDF Download RIS Download Bibtex

Abstract

This paper is focusing on 3D Finite Elements Analysis (FEA) based modelling of protrusions as defects or imperfections in the XLPE high voltage cable. This study is aiming to examine the impact, protrusions have on the initiation of partial discharges. Spherical and ellipsoidal protrusions with different sizes at the conductor screen of the high voltage cable is an essential content of this paper. In addition, a spherical gas-filled void is placed inside and outside the protrusions, and a water tree produced from protrusions is under consideration. The partial discharge influence taking place at the protrusions and the stress enhancement factor is determined for all the variations mentioned to quantify the rise in the inception of partial discharges due to the protrusions.

Go to article

Bibliography

  1.  S.M.S. Tohid Shahsavarian, “Modelling of aged cavities for partial discharge in power cable insulation”, IET Sci. Meas. Technol. 9(6), 661–670, 2015.
  2.  M.A. Saleh and S.S. Refaat, “The Impact of Water Trees and Cavities on the Electric Field Distribution in XLPE Power Cables”, in 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 2019, pp. 1‒8.
  3.  N. Hampton, “Chapter 3: HV and EHV Cable System Aging and Testing Issues”, National Electric Energy Testing, Research and Applications Center, no. Feb. pp. 1–19, 2016.
  4.  T.L. Hanley, R.P. Burford, R.J. Fleming, and K.W. Barber, “A general review of polymeric insulation for use in HVDC cables”, in IEEE Electr. Insul. Mag. 19(1), 13‒24, (2003).
  5.  W. Guoming and G.-S. Kil, “Measurement and Analysis of Partial Discharge Using an Ultra-High Frequency Sensor for Gas Insulated Structures”, Metrol. Meas. Syst. 24 (3), 515–524 (2017).
  6.  K.Ch. Kao, “Electrical Aging, Discharge, and Breakdown Phenomena”, in Dielectric Phenomena in Solids, Ed(s): Kwan Chi Kao, pp. 515‒572, Academic Press, 2004.
  7.  J. Vedral and M. Kříž. “Signal Processing in Partial Discharge Measurement.” Metrol. Meas. Syst. XVII (1), 55−64 (2010).
  8.  S. Gutierrez, I. Sancho, L. Fontan, and J. D. No, “Effect of protrusions in HVDC cables”, in IEEE Trans. Dielectr. Electr. Insul. 19(5), 1774‒1781 (2012).
  9.  M.S. Amir and S.M.H. Hosseini, “Comparison of aged XLPE power cables restoration by injecting two various anti-failure nanofluids”, Eng. Failure Anal. 90, 262‒276 (2018).
  10.  L. Andrei, I. Vlad, and F. Ciuprina, “Electric field distribution in power cable insulation affected by various defects”, in 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, 2014, pp. 1‒5.
  11.  P.H.F. Morshuis, “Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now”, IEEE Trans. Dielectr. Electr. Insul. 12(5), 905‒913 (2005).
  12.  P. Notingher, S. Holé, L. Berquez, and G.Teyssedre, “An Insight into Space Charge Measurements”, Int. J. Plasma Environ. Sci. Technol. 11, 26‒37 (2017).
  13.  D.A. do Nascimento, S.S. Refaat, A. Darwish, Q. Khan, H. Abu-Rub, and Y. Iano, “Investigation of Void Size and Location on Partial Discharge Activity in High Voltage XLPE Cable Insulation”, in 2019 Workshop on Communication Networks and Power Systems (WCNPS), Brasilia, Brazil, 2019, pp. 1‒6.
  14.  Z. Lei, J. Song, M. Tian, X. Cui, C. Li, and M. Wen, “Partial discharges of cavities in ethylene propylene rubber insulation”, IEEE Trans. Dielectr. Electr. Insul. 21(4), 1647‒1659 (2014).
  15.  M. Mahdipour, A. Akbari, and P. Werle, “Charge concept in partial discharge in power cables”, IEEE Trans. Dielectr. Electr. Insul. 24(2), 817–825 (2017).
  16.  D. He, W. Wang, J. Lu, G. Teyssedre, and C. Laurent, “Space charge characteristics of power cables under AC stress and temperature gradients”, IEEE Trans. Dielectr. Electr. Insul. 23(4), 2404‒2412 (2016).
  17.  M. Fu, L.A. Dissado, G. Chen, and J.C. Fothergill, “Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable”, IEEE Trans. Dielectr. Electr. Insul. 15(3), 851‒860 (2008).
  18.  R. Ross, “Inception and propagation mechanisms of water treeing”, IEEE Trans. Dielectr. Electr. Insul. 5(5), 660‒680, (1998).
  19.  T. Boonraksa and B. Marungsri, “Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable”, Int. J. Electr. Comput. Eng. 8(5) 795‒798 (2014).
  20.  G. Callender, Modelling Partial Discharge in Gaseous Voids by George Callender, University of Southampton, 2018.
  21.  G. Callender, P. Rapisarda, and P.L. Lewin, “Improving models of partial discharge activity using simulation”, in 2017 IEEE Electr. Insul. Conf. EIC 2017, 2017, pp. 392–395.
  22.  X. Zhou, J. Cao, S. Wang, Y. Jiang, T. Li, and Y. Zou, “Simulation of electric field around typical defects in 110kV XLPE power cable joints”, in 2017 International Conference on Circuits, Devices and Systems (ICCDS), Chengdu, 2017, pp. 21‒24.
  23.  L. Andrei, I. Vlad, and F. Ciuprina, “Electric field distribution in power cable insulation affected by water trees”, in 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, 2015, pp. 426‒429.
  24.  S. Gutiérrez, I. Sancho, L. Fontán, and M. Martínez-Iturralde, “Influence of irregularities within electric fields in high voltage cables”, in 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, 2011, pp. 752‒755.
  25.  S. Nakamura, T. Ozaki, N. Ito, I. Sengoku, J. Kawai “Dynamic behavior of interconnected channels in water-treed polyethylene subjected to high voltage”, IEEE Trans. Dielectr. Electr. Insul. 9, 390‒395 (2002).
  26.  T. Toyoda, S. Mukai, Y. Ohki, Y. Li, and T. Maeno, “Conductivity and permittivity of water tree in polyethylene”, in 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.99CH36319), Austin, TX, USA, 1999, 577‒580, vol. 2.
Go to article

Authors and Affiliations

Mohammad AlShaikh Saleh
1 2
Shady S. Refaat
2
Marek Olesz
3
Haitham Abu-Rub
2
Jarosław Guziński
3

  1. Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany
  2. Department of Electrical and Computer Engineering, Texas A&M University at Qatar
  3. Departement of Electrical Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

This page uses 'cookies'. Learn more