Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to present a theoretical analysis of top orthogonal to bottom arrays of conducting electrodes of infinitesimal thickness (conducting strips) residing on the opposite surfaces of piezoelectric slab. The components of electric field are expanded into double periodic Bloch series with corresponding amplitudes represented by Legendre polynomials, in the proposed semi-analytical model of the considered two-dimensional (2D) array of strips. The boundary and edge conditions are satisfied directly by field representation, as a result. The method results in a small system of linear equations for unknown expansion coefficients to be solved numerically. A simple numerical example is given to illustrate the method. Also a test transducer was designed and a pilot experiment was carried out to illustrate the acoustic-wave generating capabilities of the proposed arrangement of top orthogonal to bottom arrays of conducting strips.

Go to article

Authors and Affiliations

Jurij Tasinkevych
Ihor Trots
Ryszard Tymkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.

Go to article

Authors and Affiliations

T. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

Direction-splitting implicit solvers employ the regular structure of the computational domain augmented with the splitting of the partial differential operator to deliver linear computational cost solvers for time-dependent simulations. The finite difference community originallye mployed this method to deliver fast solvers for PDE-based formulations. Later, this method was generalized into so-called variationals plitting. The tensor product structure of basis functions over regular computational meshes allows us to employ the Kronecker product structureo f the matrix and obtain linear computational cost factorization for finite element method simulations. These solvers are traditionally usedf or fast simulations over the structures preserving the tensor product regularity. Their applications are limited to regular problems and regularm odel parameters. This paper presents a generalization of the method to deal with non-regular material data in the variational splitting method. Namely, we can vary the material data with test functions to obtain a linear computational cost solver over a tensor product grid with nonregularm aterial data. Furthermore, as described by the Maxwell equations, we show how to incorporate this method into finite element methods imulations of non-stationary electromagnetic wave propagation over the human head with material data based on the three-dimensional MRI scan.
Go to article

Authors and Affiliations

Marcin Łoś
ORCID: ORCID
Maciej Woźniak
ORCID: ORCID
Maciej Paszynski
ORCID: ORCID

This page uses 'cookies'. Learn more