Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of studies on the rate of zinc evaporation in the atmosphere of helium and carbon monoxide (II) carried out with the thermogravimetric method. The estimated values of zinc streams were compared with the values determined based on theoretical relationships.
Go to article

Authors and Affiliations

Jerzy Łabaj
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, the one-dimensional model for heat and mass transfer in fixed coal bed was proposed to describe the thermal and flow characteristics in a coke oven chamber. For the purpose of the studied problem, the analysis was limited to the calculations of temperature field and pyrolytic gas yield. In order to verify the model, its theoretical predictions for temperature distribution during wet coal charge carbonization were compared with the measurement results found in the literature. In general, the investigation shows good qualitative agreement between numerical and experimental data. However, some discrepancy regarding the temperature characteristics at the stage of evaporation was observed.

Go to article

Authors and Affiliations

Dariusz Kardaś
Sylwia Polesek-Karczewska
Izabela Wardach-Święcicka
Arkadiusz Grucelski
Sławomir Stelmach
Download PDF Download RIS Download Bibtex

Abstract

Evaporation and evapotranspiration is crucial part of hydrological and water resource management studies e.g. water footprinting. Proper methods for estimating evaporation/potential evapotranspiration using limited climatic data are critical if the availability of climatic data is extremely limited. In a large scale studies are very often used generalized (modelled or gridded) input data. For a large scale water footprint studies is also important to find methods as simple as possible with quantifiable error. In our study, nine simple temperature-based empirical equations were compared with a long term time series of real evaporation data from a 20 m2 tank at Hlasivo station. In the first step, we used real temperature measured at Hlasivo station for validation of equations. In the second step, the gridded temperature data (interpolated datasets) derived from the meteorological stations were used. For both datasets, the differences between observed and predicted values were categorized into three groups of accuracy and the statistical indices of each equation were calculated. Very good results were achieved with the Hamon equation from 1961 and the Oudin equation for both datasets with index of agreement (d) higher than 0.9, cross-correlation coefficient (R2) around 0.7 and root mean square error (RMSE) around 0.5 mm∙(24 h)–1The Kharrufa equation, which was developed for semi-arid or arid areas, also provides results with sufficient accuracy. Comparison of the results with similar studies showed a lower accuracy of very simple equations against more complex equations, which have RMSE lower than 0.25 mm∙(24 h)–1. But for some kind of studies, quantifiable errors with sufficient accuracy can be more important than the absolute accuracy.

Go to article

Authors and Affiliations

Libor Ansorge
Adam Beran

This page uses 'cookies'. Learn more