Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objectives of this research are to study the direct influence on the competitive advantage

and pattern development of variables affecting the competitive advantage of the Thai oil

palm industry. This research employs a quantitative research method. The population for

the study consists of 150 oil palm industrial operators in Thailand. Questionnaires are used

in the data collection and the data are analyzed by using SEM. The research results reveal

that the Knowledge Management Process and Supply Chain Integration positively influence

the competitive advantage in the quality, delivery, and cost. The competitive advantage

receives a positive direct impact from the Knowledge Management Process and Supply

Chain Integration. The variation of competitive advantage can be explained as 84%. The

obtained results can be used for developing the industry to create economic growth and

sustainable competitive advantage.

Go to article

Authors and Affiliations

Phatthanaphong Phengchan
Pranom Thangpreecharparnich
Download PDF Download RIS Download Bibtex

Abstract

Soluble silica from palm oil clinker was extracted using Laine’s method. It involved two major steps, namely water reflux and distillation. The use of 480 g of POCP and 12 hours of distillation in the extraction experiment resulted in 53.50% of dissolved silica, which was the highest gain among the trial experiments and was chosen as an optimum parameter for the subsequent characterisation analysis. In addition, its effect on cement hydration was studied by including it as a filler in mortar mixtures. Mortar with 7.50% of extracted silica gained high strength in the early days of curing and performed well throughout the maturing age. The rapid hardening properties of soluble silica-based mortar would promote the potential of soluble silica as an additive for rapid hardening.
Go to article

Authors and Affiliations

A.H. Ismail
1
ORCID: ORCID
A. Kusbiantoro
1
ORCID: ORCID
L.T. Yian
2
ORCID: ORCID
K. Muthusamy
3
ORCID: ORCID
N.A.M. Mortar
4
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  2. Universiti Teknologi Malaysia, Faculty of Engineering, Johor, Malaysia
  3. Universiti Malaysia Pahang, Faculty of Civil Engineering Technology Pahang, Malaysia
  4. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Perlis, Malaysia

Authors and Affiliations

Mohd Ikhmal Haqeem Hassan
1
ORCID: ORCID
Aeslina Abdul Kadir
1 2
ORCID: ORCID
Nor Amani Filzah Mohd Kamil
1
ORCID: ORCID
Nurul Nabila Huda Hashar
1
ORCID: ORCID
Noor Amira Sarani
1
ORCID: ORCID
Badaruddin Ibrahim
3
ORCID: ORCID
Kahirol Mohd Salleh
3
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
4 2
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, 86400 Parit Raja, Batu Pahat Johor, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellent Geopolymer and Green Technology (CEGeoGTech), Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Technical and Vocational Education, 86400 Parit Raja, Batu Pahat Johor, Malaysia
  4. Universiti Malaysia Perlis, Faculty of Engineering Technology (FETech), 01000 Kangar, Perlis, Malaysia

This page uses 'cookies'. Learn more