Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There have been presented results of perennial studies of sedimentation process. Several materials of diversified parameters which are characteristic for water and technological treatment process have been examined by means of model installations. For experiments there have been used lamella and multichannels packing with different geometric configurations. The correlation equations enabling design of industrial and highly effective settlers have been elaborated on the basis of fractional effectiveness model.
Go to article

Authors and Affiliations

Jan Hehlmann
Andrzej Bryczkowski
Edyta Kujawska
Download PDF Download RIS Download Bibtex

Abstract

Macrozooplankton was caught at 17 stations with a Bongo net from the 0-200 m layer. The stations were located near the pack ice edge, between Elephant Islands and the South Orkney Islands. The cluster analysis of 58 recognized taxa allowed to distinguish three regions: the western — near Elephant Island, the middle and the western one — at the South Orkney Islands. No clear difference in macrozooplankton species composition at the open sea stations and those near pack ice was found. The average biomass of macrozooplankton in the investigated area amounted to 82.8 g/1000 m3 (95% CL: 47.2-94.2 g/1000m3). Macrozooplankton was dominated by salps and krill. The biomass and 95% confidence limits were 52.0 g/1000 m3 (15.6-59.2 g/1000 m3) and 26.1 g/1000 m3 (8.4-30.4 g/1000 m3), respectively. Differences in the biomass distribution of some taxa in three distinguished regions were observed. Except of salps the biomass of particular taxa caught near the pack ice edge and the same taxa caught in stations distant from this edge were similar. The biomass of salps was evidently higher in most northern stations.

Go to article

Authors and Affiliations

Jacek Siciński
Wojciech Kittel
Maria I. Żmijewska
Download PDF Download RIS Download Bibtex

Abstract

Process intensification is one of the key branches of process engineering. High gravity equipment achieves intensification by substituting gravity with much higher centrifugal force. Rotating Packed Bed is the leading example of high gravity solutions, strongly facilitating gas-liquid mass transfer. However, cylindrical packings come with certain drawbacks, such as dry spots, that can be overcome with new solutions, such as baffle-based packing geometries. However, when baffles are arranged too close to each other, liquid bridges are formed between them, which may lead to decrease in mass transfer efficiency. This work is concerned with improvement of a Zickzack-like internal by the means of visual studies with the use of high-speed camera. According to measured ligament break-up length, two new packings were designed for particular rotational speeds and tested experimentally for effective mass transfer area and wet pressure drop.
Go to article

Authors and Affiliations

Dawid Zawadzki
1
ORCID: ORCID
Małgorzata Majdzik
1
ORCID: ORCID
Ondřej Hájek
2
ORCID: ORCID
Milan Malý
2
ORCID: ORCID
Michał Blatkiewicz
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
  2. Brno University of Technology, Faculty of Mechanical Engineering, Technicka 2, 616-69 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Total count (TC) of bacteria in drifting annual pack-ice in austral spring fluctuated between 2.8-106 and 2,09-109 dm3. TC of bacteria was lowest in the upper layer of a large pack-ice fragment, emersed above water surface and almost completely free of diatoms; it was comparable to TC of bacteria in surrounding sea water, which was very low at this time (1,92- 106 — 5.8-106 dm -3). TC of bacteria increased in the deeper layers of pack-ice, attaining a maximum in the middle layer characterized by a high count of diatoms. TC of bacteria was highest in small pack-ice pieces 10—20 kg in being and densely overgrown with diatoms. Bacterial population in pack-ice was dominated by rods (62%), and it contained filamentous bacteria (2.4%) and prosthecate forms (4,8%), rarely present in deep sea. Mean volume of bacterial cell (0,206/μm3) was small, only slightly exceeding that of cells of free-living bacteria in sea water in summer.

Go to article

Authors and Affiliations

Marek K. Zdanowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the details of optimized mix design for normal strength and high performance concrete using particle packing method. A critical review of mix design methods have been carried out for normal strength concrete using American Concrete Institute (ACI) and Bureau of Indian Standards (BIS) methods highlighting the similarities and differences towards attaining a particular design compressive strength. Mix design for M30 and M40 grades of concrete have been carried out using ACI, BIS and particle packing methods. Optimization of concrete mix has been carried out by means of particle packing method using EMMA software, which employs modified Anderson curve to adjust the main proportions. Compressive strength is evaluated for the adjusted proportions and it is observed that the mixes designed by particle packing method estimates compressive strength closer to design compressive strength. Further, particle packing method has been employed to optimize the ingredients of high performance concrete and experiments have been carried out to check the design adequacy of the desired concrete compressive strength.

Go to article

Authors and Affiliations

S. Gopinath
A. Ramachandra Murthy
D. Ramya
Nagesh R. Iyer
Download PDF Download RIS Download Bibtex

Abstract

The objective of this research was to evaluate the adsorption capacity of the shell biomass ( Dioscorea rotundata), taking into account the impact of temperature, bed height, and particle size on the removal of nickel(II) ions in aqueous solution in a continuous fixed-bed column system; performing the modelling of the break curve. The biomass was characterised by SEM-EDS analysis. The analysis found that it represents a rough, heterogeneous structure, rich in carbon and oxygen, with mesopores, and is suitable for removing heavy metals. It also determined the optimum parameters of the bed height, particle size, and temperature, keeping the pH and the initial concentration of the solution constant. The results revealed that the bed height and the particle size are the two most influential variables in the process. Ni(II) removal efficiencies range between 85.8 and 98.43%. It was found that the optimal conditions to maximise the efficiency of the process are temperature of 70°C, 1.22 mm particle size, and 124 mm bed height. The break curve was evaluated by fitting the experimental data to the Thomas, Adams–Bohart, Dose–Response, and Yoon– Nelson models, with the Dose–Response model showing the best affinity with a coefficient of determination R2 of 0.9996. The results obtained in this research showed that yam shell could be suggested as an alternative for use in the removal of Ni(II) ions present in an aqueous solution in a continuous system.
Go to article

Authors and Affiliations

Ángel Villabona-Ortíz
1
ORCID: ORCID
Candelaria Tejada-Tovar
1
ORCID: ORCID
Rodrigo Ortega-Toro
2
ORCID: ORCID
Keily Peña-Romero
1
ORCID: ORCID
Ciro Botello-Urbiñez
1

  1. Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  2. Universidad de Cartagena, Department of Food Engineering, Carrera 6, Cl. de la Universidad 36-100, Cartagena de Indias, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Blast mitigation continues to be a popular field of research when military vehicles are concerned. The main problem is coping with the vehicle global motion consequences following an explosion. The paper presents a potential application of the linear vacuum packed particle (VPP) damper as a supplementation for a viscous shock absorber in a traditional blast mitigation seat design. The paper also presents field test results for the underbelly blast explosion, comparing them to the laboratory tests carried out on the impact bench. To collect accelerations, the anthropomorphic test device, i.e. the Hybrid III dummy, was used. A set of numerical simulations of the modified blast mitigation seat with the additional VPP linear damper were revealed. The VPP damper was modeled according to the Johnson–Cook model of viscoplasticity. The Hertzian contact theory was adopted to model the contact between the vehicle and the ground. The reduction of the dynamic response index (DRI) in the case of the VPP damper application was also proved.
Go to article

Bibliography

  1.  F. Melanie and P.V.S. Lee, Military Injury Biomechanics The Cause and Prevention of Impact Injuries. CRC Press, 2017.
  2.  H. Kamel, O. Harraz, M. Yacoub, and A. Ali, “Developing a custom Anthropomorphic Test Device for measuring blast effects on occupants inside armored vehicles”, J. Eng. Sci. Mil. Technol., vol. 3, no. 2, pp. 70–76, 2019, doi: 10.21608/ejmtc.2019.15041.1127.
  3.  I. Overton, “A decade of global IED harm reviewed |AOAV”, Action on Armed Violence, 2020. [Online]. Available: https:// aoav.org.uk/2020/a- decade-of-global-ied-harm-reviewed/ (accessed Feb. 05, 2021).
  4.  M. Müller, U. Dierkes, and J. Hampel, “Blast protection in military land vehicle programmes: Approach, methodology and testing”, WIT Trans. Built Environ., vol. 87, pp. 247–257, Jun. 2006, doi: 10.2495/SU060251.
  5.  A. Iluk, “Estimation of spine injury risk as a function of bulletproof vest mass in case of Under Body Blast load”, 2014 IRCOBI Conf. Proc. – Int. Res. Counc. Biomech. Inj., 2014, pp. 809–820.
  6.  Research and Technology Organisation North Atlantic Treaty Organisation, Protection level of armoured vehicles volume 2, AEP-55, vol. 2, no. AUGUST. Allied Engineering Publication, 2011.
  7.  Research and Technology Organisation North Atlantic Treaty Organisation, “Test Methodology for Protection of Vehicle Occupants against Anti-Vehicular Landmine Effects,” 2007.
  8.  M. Cheng, D. Bueley, J.P. Dionne, and A. Makris, “Survivability evaluation of blast mitigation seats for armored vehicles”, 26th Int. Symp. Ballist., 2011.
  9.  P. Baranowski and J. Malachowski, “Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving”, Bull. Polish Acad. Sci. Tech. Sci., vol. 63, no. 4, pp. 867–878, 2015, doi: 10.1515/bpasts-2015-0099.
  10.  V. Denefeld, N. Heider, A. Holzwarth, A. Sättler, and M. Salk, “Reduction of global effects on vehicles after IED detonations”, Def. Technol., vol. 10, no. 2, pp. 219–225, 2014, doi: 10.1016/j.dt.2014.05.005.
  11.  M. Żurawski and R. Zalewski, “Damping of Beam Vibrations Using Tuned Particles Impact Damper”, Appl. Sci., vol. 10, p. 6334, 2020, doi: 10.3390/app10186334.
  12.  J. Ramalingam and R. Thyagarajan, “Analysis of Design Range for a Stroking Seat on a Stroking Floor to Mitigate Blast Loading Effects”, NATO Sci. Technol. Organ. Publ., 2017.
  13.  G. Hiemenz, M. Murugan, W. Hu, N. Wereley, and J.H. Yoo, “Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration,” 2016.
  14.  S.A. Venkatesh Babu, R. Thyagarajan, “Retractor-Based Stroking Seat System and Energy-Absorbing Floor to Mitigate High Shock and Vertical Acceleration”, NATO/STO AVT-221 Spec. Meet. “Design Prot. Technol. L. Amphib. NATO Veh.”, 2014.
  15.  S.P. Desjardins, “The evolution of energy absorption systems for crashworthy helicopter seats”, J. Am. Helicopter Soc., vol. 51, no. 2, pp. 150–163, 2006, doi: 10.4050/JAHS.51.150.
  16.  M. Żurawski, B. Chiliński, and R. Zalewski, “A Novel Method for Changing the Dynamics of Slender Elements Using Sponge Particles Structures”, Materials (Basel)., vol. 13, no. 21, p. 4874, 2020, doi: 10.3390/ma13214874.
  17.  P. Bartkowski and R. Zalewski, “A concept of smart multiaxial impact damper made of vacuum packed particles”, MATEC Web Conf., vol. 157, p. 05001, 2018.
  18.  G. Bienioszek and S. Kciuk, “Determination of Boundary Conditions for the Optimization Process of Blast Mitigation”, in 23rd International Conference Engineering Mechanics 2017, 2017.
  19.  R. Zalewski, P. Chodkiewicz, and M. Shillor, “Vibrations of a mass-spring system using a granular-material damper”, Appl. Math. Model., vol. 40, no. 17–18, pp. 8033–8047, 2016, doi: 10.1016/j.apm.2016.03.053.
  20.  R. Zalewski and T. Szmidt, “Application of Special Granular Structures for semi-active damping of lateral beam vibrations”, Eng. Struct., vol. 65, pp. 13–20, 2014, doi: 10.1016/j.engstruct.2014.01.035.
  21.  R. Zalewski and M. Pyrz, “Mechanics of Materials Experimental study and modeling of polymer granular structures submitted to internal underpressure”, Int. J. Mech. Mater., vol. 57, pp. 75–85, 2013, doi: 10.1016/j.mechmat.2012.11.002.
  22.  E. Brown et al., “Universal robotic gripper based on the jamming of granular material”, Proc. National Academy of Sciences, vol. 107, no. 44 pp. 18809–18814, 2010, doi: 10.1073/pnas.1003250107.
  23.  M.D. Luscombe and J.L. Williams, “Comparison of a long spinal board and vacuum mattress for spinal immobilisation”, Emerg. Med. J., vol. 20, pp. 476–478, 2003.
  24.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm”, Arch. Civ. Mech. Eng., vol. 19, pp. 322–333, 2019, doi: 10.1016/j.acme.2018.11.002.
  25.  D. Rodak and R. Zalewski, “Innovative Controllable Torsional Damper Based on Vacuum Packed Particles”, Materials (Basel)., vol. 13, p. 4356, 2020.
  26.  Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technol., vol. 71, pp. 239–250, 1992.
  27.  R. Chakrabarty and J. Song, “A modified Johnson–Cook material model with strain gradient plasticity consideration for numerical simulation of cold spray process”, Surf. Coat. Technol., vol. 397, p. 125981, 2020, doi: 10.1016/j.surfcoat.2020.125981.
  28.  I.P. Herman, Biological and Medical Physics, Biomedical Engineering. Springer, 2008. p.16–17.
Go to article

Authors and Affiliations

Dominik Rodak
1
ORCID: ORCID
Mateusz Żurawski
1
ORCID: ORCID
Michał Gmitrzuk
2
ORCID: ORCID
Lech Starczewski
2

  1. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Poland
  2. Military Institute of Armoured and Automotive Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

At the northern border of pack ice the study on chlorophyll a content, density of cells, species composition and domination in samples from the drifting ice floes and from brash ice was carried out. 102 taxa of algae were found in the pack ice. In the study area algal taxa were rather uniformly distributed. In different ice layers the qualitative composition of diatom assemblages was similar and usually the diatom Nitzschia cylindrus was dominant and most frequent. Chlorophyll a content (from 0.12 to 334.5 mg m-3) and the density of cells (from 0.3 to 362 x l0 6 cm) varied strongly in various habitats. Ice floes near the northern pack ice border contained low values of chlorophyll a (mean value 0.50 ±0.28 mg m-3) . However, brash sea ice originating from ice floes, contained 142.4 ±117.5 mg m-3 of chlorophyll α in visibly discoloured and 30.1 ±24.3 mg m~3 of chlorophyll α in not visibly discoloured parts on average. The range of chlorophyll α content and the presence of characteristic species allow to distinguish brash sea ice infiltration assemblage of diatoms.

Go to article

Authors and Affiliations

Ryszard Ligowski
Download PDF Download RIS Download Bibtex

Abstract

For many years, people’s perceptions of wolves had nothing to do with actual knowledge about wolf biology and ecology. What can close observations of wolf families teach us about these mammals? Should we give wolves names? And why don’t they need our empathy?

Go to article

Authors and Affiliations

Roman Gula
Katarzyna Bojarska
Download PDF Download RIS Download Bibtex

Abstract

An alternative fabrication method for metallic fuel in Gen-IV reactor was introduced with vibration packing of nuclear fuel particles to facilitate remote fabrication in a hot cell and reduce the generation of long-lived radioactive wastes. Vibration packing experiments on metallic particulate fuel using a surrogate 316L stainless steel powder were done to investigate the packing density and the uniformity of the simulated fuel according to the filling method and the vibration condition. Metallic particulate fuel filled with a pre-mixed power over all particles had the highest packing fraction and the most uniform distribution among the filling methods. The vibration packing method showed that it could fabricate the metallic particulate fuel having uniform distribution of spherical fuel particles through the adjustment of the filling method of the metallic powder and the vibration condition of the metallic particulate fuel.
Go to article

Bibliography

[1] T. Abram, S. Ion, Energy Policy 36, 4323-4330 (2008).
[2] G eneration IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.
[3] H.S. Lee, G.I. Park, I.J. Cho, Sci. Technol. Nucl. Install. 2013, 1-11 (2013).
[4] H. Lee, G.I. Park, E.H. Kim, Nucl. Eng. Technol. 43, (317-328) 2011.
[5] J.I. Jang, Nucl. Eng. Technol. 43, 161-170 (2007).
[6] J.H. Jang, H.S. Kang, Y.S. Lee, H.S. Lee, J.D. Kim, J. Radioanal. Nucl. Chem. 295, 1743-1751 (2013).
[7] C.E. Stevenson, The EBR-II Fuel Cycle Story, American Nuclear Society, La Grange Park, Ill, USA, 1987.
[8] H. Lee, G.I. Park, I.J. Cho, Sci. & Technol. Nucl. Install. 2013, 1-11 (2013).
[9] J.H. Kim, H. Song, H.T. Kim, K.H. Kim, C.B. Lee, R.S. Fielding, J. Radioanal. Nucl. Chem. 299, 103-109 (2014).
[10] M .A. Pouchon, G. Ledergerber, F. Ingold, K. Bakker, J. Nucl. Mater. 3, 275-312 (2012).
[11] G . Ledergerber, F. Ingold, R.W. Stratton et al., Nucl. Tech. 114, 194-203 (1996).
[12] G . Bart, F.B. Botta, C.W. Hoth, G. Ledergerber, R.E. Mason, R.W. Stratton, J. Nucl. Mater. 376, 47-59 (2008).
[13] K.H. Kim, D.B. Lee, C.K. Kim, I.H. Kuk, K.W. Paik, J. Nucl. Sci. & Tech. 34, 1127-1132 (1997).
[14] J.H. Kim, J.W. Lee, K.H. Kim, C.B. Lee, Sci. and Tech. Nucl. Istall. 2016, 1-7 (2016).
[15] K.H. Kim, S.J. Oh, S.K. Kim, C.T. Lee, C.B. Lee, Surf. Interface Anal. 44, 1515-1518 (2012).
[16] R . Herbig, K. Rudoph, B. Lindau, J. Nucl. Mater. 204, 93-101 (1993).
[17] K.L. Peddicord, R.W. Stratton, J.K. Thomas, Prog. Nucl. Energy 18, 265-299 (1986).
[18] G . Ledergerber, F. Ingold, R.W. Stratton, H.P. Alder, Nucl. Technol. 114, 194-204 (1996).
[19] A.S. Icenhour, D.F. Williams, Sphere-Pac Evaluation for Transmutation, ORNL/TM-2005/41, 2005.
[20] G .D. Del Cul, C.H. Mattus, A.S. Icenhour, L.K. Felker, Fuel Fabrication Development for the Surrogate Sphere-Pac Rodlet, ORNL/TM-2005/108, 2005.
[21] A.L. Lotts et al., Fast Breeder Reactor Oxide Fuels Development, ORNL-4901, 1973.
[22] Ch. Hellwig, K. Bakker, M. Nakamura, F. Ingold, L.A. Nordstro, Y. Kihara, Nucl. Sci. Eng. 153, 233-244 (2006).
[23] H.A.C.K. Hettiarachchi, W.K. Mampearachchi, Powder Technology 336, 150-160 (2018).
[24] J.G. Jeon et al., Korean J. Met. Mater. 54, 322-331 (2016).
Go to article

Authors and Affiliations

Ki-Hwan Kim
1
ORCID: ORCID
Seong-Jun Ha
1
Sang-Gyu Park
1
Seoung-Woo Kuk
1
Jeong-Yong Park
1

  1. Korea Atomic Energy Research Institute, Next-Generation Fuel Technology Development Division, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns the problem of empirical investigation and mathematical modelling of a novel controllable damper using vacuum packed particles. Vacuum packed particles tend to be placed among the group of so-called ‘smart structures’. The macroscopic mechanical features of such structures can be controlled by the partial vacuum parameter. The authors consider an application of Bouc-Wen model in order to represent the dynamic behaviour of the investigated device. The verification of the model response with experimental data is discussed. The Bouc-Wen model parameters identification is described.
Go to article

Authors and Affiliations

Anna Mackojc
1
ORCID: ORCID
Bogumil Chilinski
1
ORCID: ORCID
Robert Zalewski
1
ORCID: ORCID

  1. Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the configuration of a space-effective rack cell for storing a given set of heterogeneous items. Rack cells are the primary components of rack storage areas. A rack cell configuration problem (RCCP) for heterogeneous storage is formulated as a combinatorial mathematical model. An effective heuristic for solving the RCCP in practical cases is presented. The proposed heuristic consists of multistage brute force searching of defined sets of feasible solutions and solving linear integer assignment problems by the branch-and-bound method. The developed algorithm was implemented and tested, and the rack cell obtained meets the modularity requirements in the design and operation of heterogeneous storage areas.

Go to article

Bibliography

  1.  M. Kłodawski, K. Lewczuk, I. Jacyna-Gołda, and J. Żak, “Decision making strategies for warehouse operations”, Arch. Transp. 41(1), 43–53 (2017).
  2.  I. Jacyna-Gołda, M. Izdebski, E. Szczepański, and P. Gołda, “The assessment of supply chain effectiveness”, Arch. Transp. 45(1), 43–52 (2018).
  3.  M. Jacyna, M.Wasiak, and A. Bobiński, “SIMMAG3D as a tool for designing of storage facilities in 3D”, Arch. Transp. 42(2), 25–38 (2017).
  4.  K.R. Gue and R.D. Meller, “Aisle configurations for unit-load warehouses”, IIE Trans. 41(3), 171–182 (2009).
  5.  S. Labant, M. Bindzárová Gergel’ová, Š. Rákay, E. Weiss, and J. Zuzik, “Track planarity and verticality of the warehouse racks for the quality assessment of further operation”, Geodesy Cartogr. 68(2), 305–319 (2019).
  6.  G. Dukic and T. Opetuk, “Warehouse layouts”, in Warehousing in the Global Supply Chain. Advanced Models, Tools and Applications for Storage Systems. (Ed.) Manzini, R., pp. 55‒69, Springer-Verlag, London, 2012.
  7.  G. Kovács, “Layout design for efficiency improvement and cost reduction”, Bull. Pol. Ac.: Tech. 67(3), 547‒555 (2019).
  8.  T. Lerher and M. Sraml, “Designing unit load automated storage and retrieval systems”, in Warehousing in the Global Supply Chain. Advanced Models, Tools and Applications for Storage Systems. (Ed.) Manzini, R., pp. 211‒231 Springer-Verlag, London, 2012.
  9.  H.L. Lee, M.H. Lee, and L.S. Hur, “Optimal design of rack structure with modular cell in AS/RS”, Int. J. Prod. Econ. 98(2), 172‒178 (2005).
  10.  A. Ratkiewicz, “A combined bi-level approach for the spatial design of rack storage area”, J. Oper. Res. Soc. 64(8), 1157‒1168 (2013).
  11.  H. Dyckhoff, “Cutting and packing in production and distribution: a typology and bibliography”, Springer-Verlag, Berlin, 1992.
  12.  G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and packing problems”, Eur. J. Oper. Res. 183(3), 1109‒1130 (2007).
  13.  E. Silva, J.F. Oliveira, and G. Wäscher, “2DCPackGen: A problem generator for two-dimensional rectangular cutting and packing problems”, Eur. J. Oper. Res. 237(3), 846‒856 (2014).
  14.  S. Martello, “Packing problems in one and more dimensions”, in Winter School on Network Optimization, 7th edition, 2018, Estoril, Portugal. [Online]. Available: http://www.or.deis.unibo.it/staff_pages/martello/Slides_Estoril_Martello.pdf (accessed: May 01, 2020].
  15.  G. Scheithauer, “Introduction to cutting and packing optimization”, International Series in Operations Research and Management Science, Springer-Verlag, Berlin, 2018.
Go to article

Authors and Affiliations

Andrzej Ratkiewicz
1
ORCID: ORCID
Konrad Lewczuk
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Simplified optimization method using the MATLAB function fminbnd was adopted to determine the optimal feed temperature (OFT) for an isothermal packed-bed reactor (PBR) performing hydrogen peroxide decomposition (HPD) by immobilized Terminox Ultra catalase (TUC). The feed temperature was determined to maximize (minimize) the average reactant conversion (reactant concentration) over a fixed period time at the reactor outlet. The optimization was based on material balance and rate equation for enzyme action and decay and considered the effect of mass-transfer limitations on the system behavior. In order to highlight the relevance and applicability of the work reported here, the case of optimality under isothermal operating conditions is considered and the practical example is worked out. Optimisation method under consideration shows that inappropriate selection of the feed temperature may lead to a decrease in the bioreactor productivity.
Go to article

Authors and Affiliations

Ireneusz Grubecki
1
ORCID: ORCID
Wirginia Tomczak
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  2. Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes a methodological framework developed to select a multi-label dataset transformation method in the context of supervised machine learning techniques. We explore the rectangular 2D strip-packing problem (2D-SPP), widely applied in industrial processes to cut sheet metals and paper rolls, where high-quality solutions can be found for more than one improvement heuristic, generating instances with multi-label behavior. To obtain single-label datasets, a total of five multi-label transformation methods are explored. 1000 instances were generated to represent different 2D-SPP variations found in real-world applications, labels for each instance represented by improvement heuristics were calculated, along with 19 predictors provided by problem characteristics. Finally, classification models were fitted to verify the accuracy of each multi-label transformation method. For the 2D-SPP, the single-label obtained using the exclusion method fit more accurate classification models compared to the other four multi-label transformation methods adopted.
Go to article

Authors and Affiliations

Neuenfeldt Júnior Alvaro
Matheus Francescatto
Gabriel Stieler
David Disconzi

This page uses 'cookies'. Learn more