Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 33
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Celem pracy była wstępna charakterystyka (mineralogiczna, chemiczna, teksturalna) odpadów poflotacyjnych, stanowiących surowiec uboczny (odpadowy) przy uzyskiwaniu koncentratów cynkowo-ołowiowych, pod kątem dalszych analiz nad możliwością ich perspektywicznego (eksperymentalnego) wykorzystania jako sorbentów gazów kwaśnych (SO2 i CO2). Składowisko tych odpadów jest własnością ZGH 'Bolesław' w Bukownie. Materiał badawczy stanowiła próbka odpadów poflotacyjnych pobrana ze stawu osadowego nr 1, leżącego w południowej części Stawu Zachodniego. Charakterystyka wytypowanych do badań materiałów obejmowała podstawowe badania mineralogiczne (XRD, SEM-EDS), analizy chemiczne (oznaczenie zawartości wilgoci analitycznej, zawartości strat prażenia, podstawowego składu chemicznego, jak też pierwiastków śladowych) oraz wyznaczenie podstawowych parametrów teksturalnych (powierzchnia właściwa BET, rozkład i wielkość porów). Badania mineralogiczne wykazały, że materiał odpadowy stanowią głównie minerały węglanowe (w przewadze kalcyt, dolomit, ankeryt) oraz minerały stanowiące pozostałość po niewyflotowanych kruszcach (w przewadze galena, sfaleryt). Analiza chemiczna pozwoliła stwierdzić, iż w analizowanej próbce dominują związki wapnia, magnezu i żelaza uwarunkowane przewagą minerałów węglanowych w badanych odpadach. Wśród pierwiastków śladowych przeważa arsen, następnie mangan i bar, występujące jednak w ilości nie przekraczającej 1%. Analiza teksturalna wykazała, że materiał badawczy charakteryzuje się niską powierzchnią właściwą i dużymi rozmiarami cząstek. Przeprowadzone badania sugerują, że analizowany materiał charakteryzuje się ubogimi właściwościami adsorpcyjnymi, aczkolwiek mógłby on znaleźć zastosowanie w metodach odsiarczania, jak też neutralizacji dwutlenku węgla (karbonizacja). Należałoby jednak w tym celu przeprowadzić dodatkowe badania wymywalności metali ciężkich w środowisku kwasowym, jak też zastosować domieszki innych składników, takich jak cement czy zeolity, w celu immobilizacji niebezpiecznych składników odpadów.

Go to article

Authors and Affiliations

Magdalena Wdowin
Agnieszka Gruszecka
Download PDF Download RIS Download Bibtex

Abstract

Ore and non-ore mineralization in cracks filled with hydrocarbons in the dark grey Upper-Devonian limestone has been found in the Józefka quarry of Upper Devonian limestone and dolomite near the Górno village near Kielce at Holy Cross Mts. Poland. Hydrocarbons in the liquid form and iron and copper sulphides appears hear in the fault zone as joints filling. The wall rocks are impregnated by hydrocarbons giving them black color. Hydrocarbon impregnations appears also following the bedding planes The coexistence of ore mineralization and hydrocarbon suggests their common origin and migration from deep-seated sources, that may be the Silurian Ordovician or Lower to Middle Devonian black shales. The metallic-hydrocarbon compounds were suggested as metals carrier.

Ore and non-ore mineralization in cracks filled with hydrocarbons in the dark grey Upper-Devonian limestone has been found in the Józefka quarry of Upper Devonian limestone and dolomite near the Górno village near Kielce at Holy Cross Mts. Poland. Hydrocarbons in the liquid form and iron and copper sulphides appears hear in the fault zone as joints filling. The wall rocks are spotty impregnated by hydrocarbons giving them black color. Hydrocarbon impregnations appears also following the bedding planes The coexistence of ore mineralization and hydrocarbon suggests their common origin and migration from deep-seated sources, that may be the Silurian Ordovician or Lower to Middle Devonian black shales. The metallic-hydrocarbon compounds were suggested as metals carrier.

Go to article

Authors and Affiliations

Maciej Pawlikowski
Marek Nieć
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes the present state of the phosphate raw material base to meet Ukrainian chemical enterprises’ needs. In Ukraine, a number of complex apatite and phosphorite deposits have been explored. Their exploitation can lead to a complete supply of Ukrainian chemical enterprises with raw materials and can partly reduce the amount of expensive imported phosphate mineral fertilizers. At present, the following deposits, where apatite is connected with other useful components, are prepared for exploitation: Stremyhorod, Fedorivka, Novopoltavka, Kropyvna and others. The advantage of the development of these deposits is the possibility to extract apatite along with the production of rare earth concentrates, ilmenite, titanomagnetite, as well as feldspars, olivine, pyroxenes, mica and others which will significantly increase the profitability of the deposits development.

The alternative to apatite-containing deposits in Ukraine can be sedimentary deposits of nodule, granular and mixed type phosphorites. Phosphorite deposits can be used mainly for the production of phosphorite and limestone flour. Considerable resources of granular phosphorites have been discovered in Volyn-Podillia and Dnieper-Donetsk which are considered to have a various agricultural effect. They are environmentally friendly ores without impurity which prevents plants from cesium, strontium and reduces nitrates in the soil. Arranging the exploration of phosphorite ores in certain parts of Volyn-Podillia basin and Dnieper-Donets Rift is recommended.

Go to article

Authors and Affiliations

Miroslav Syvyi
Petro Demyanchuk
Bohdan Havryshok
Bohdan Zablotskyi
Download PDF Download RIS Download Bibtex

Abstract

The contemporary underground mining of raw minerals is more and more associated with geological and mining software packages which support the work of designers from the moment of the exploration of a deposit, determination of its size and quality, geological, hydrogeological and tectonic conditions, by planning the development and cutting of the deposit. Production planning is one of the most important activities carried out in the course of a mining project, because it allows to set specific production results of a mine in relation to a time unit, and then allows for a verification of the degree of completion of the assumed plan. At present, computer-aided design is applicable to daily or long-term output planning taking deposit, qualitative, quantitative and cost constraints into account. In the article, selected forms of ore deposits were presented. On the basis of several dozen boreholes up to 300m in length, an exemplary fragment of the ore cutting model using computer-aided design of mining works was presented. By using modern computer software - ABB MineScape with modular construction, the possibilities of improving the process of development of future exploitation areas have been determined. In particular, the arrangement of boreholes, based on which ones the cross sections were made with, present the exemplary lithostratigraphic thickness of layers, including the location of discontinuous deformations in the form of faults, and an ore bearing zone. For the block model, resources with priority for metal N o. 1 and 2 were calculated. I n the last section of the article, the cutting idea for a shallow ore deposit has been presented. The degree of effective use of the deposit has been analysed for the room and pillar mining method.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Waldemar Korzeniowski
Andrzej Gądek
Radosław Misiak
Download PDF Download RIS Download Bibtex

Abstract

The analysis of changes in the mechanical properties of wooden mining cribs under the influence of different types of exploitation loads is the question for which deals with many domestic and abroad research centers deal with. High The high interest in this subject results from the increase of the conducted depth exploitation, which contributes to the increase in both the vertical pres-sure and the complexity of geological – mining conditions and in- the intensification of natural hazards. Another reason is the tendency of decreasing the thickness of the exploited ores deposits. Wooden crib support is used Both both in underground ore, hard coal and salt mining is used wooden crib support. Mining cribs with various configurations are especially useful for the reinforcement of excavations workings behind the front and for further strengthen of the crossings. In particular, additional reinforcement support in the form of wooden cribs (pile supporting), which shall be left empty or filled with waste rock is applied in the ore mining in places where found extended rooms or drifts are found or in places with degraded roof conditions, applies additional reinforcement support in the form of wooden cribs (pile supporting), which shall be left empty or filled with waste rock. During underground ex-ploitation is produced waste Waste rock, which comes from the access, prepar-atory excavations and from ongoing field of exploitation is produced during underground exploitation. In the case of the underground exploitation of cop-per ore, waste rock is used to fill voids after exploitation as rock stowing. It is also used for filling mining wooden cribs, as an artificial support and for harder transportation roads. This paper presents the results of the laboratory strength tests performed on models of four-point timber cribs, built with beams set horizontally, at the ge-ometrical scale of 1:10. In the laboratory research Research wooden cribs models with size 200 × 200 × 200 mm and 100 × 100 × 100 mm were used in the laboratory. The paper describes the maximum loading capacity of the cribs consisted consisting only of beams and filled with waste rocks. In addition, a vertical and appropriate strain of cribs at maximum force was shown. On the basis of laboratory research it was found that the use of the same number of timbers and the management of waste rocks, the filling of the four-point cribs with the waste rocks allowed several times to increase its support to be increased several times.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Download PDF Download RIS Download Bibtex

Abstract

The article describes the method of controlling the recovered grade based on measuring the intensity of volume ultrasonic oscillations and Lamb waves covering a fixed distance through the test medium and on a metal plate contacting the test medium at various time points of deliberate motion of ground materials.

The authors suggest a method of determining density of ground ore particles in the pulp periodically after isolating the pulp flow in the vertical part of the measuring vessel based on measuring attenuation change values in Lamb waves covering a fixed distance on a plate contacting the medium under study and high frequency volume ultrasonic oscillations that have come through it within a certain time period.

There are given dependencies of amplitudes of measuring channels based on volume ultrasonic oscillations and surface Lamb waves, size distribution according to solid phase pulp particles for various types of ores under study, a set of curves for determining the recovered grade with regard to various types of ores under study.

Go to article

Authors and Affiliations

Vladimir Morkun
Natalia Morkun
Vitaliy Tron
Svitlana Hryshchenko
Oleksandra Serdiuk
Iryna Dotsenko
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the validation process of a certain method of balancing gas contained in the pore space of rocks. The validation was based upon juxtaposition of the examination of rocks’ porosity and the effects of comminution in terms of assessing the possibility of opening the pore space. The tests were carried out for six dolomite samples taken from different areas of the ‘Polkowice-Sieroszowice’ copper mine in Poland. Prior to the grinding process, the rocks’ porosity fell in the range of 0.3-14.8%, while the volume of the open pores was included in the 0.01-0.06 cm3/g range. The grinding process was performed using an original device – the GPR analyzer. The SEM analysis revealed pores of various size and shape on the surface of the rock cores, while at the same time demonstrating lack of pores following the grinding process. The grain size distribution curves were compared with the cumulative pore volume curves of the cores before grinding. In order to confirm the argument put forward in this paper – i.e. that comminution of a rock to grains of a size comparable with the size of the rock’s pores results in the release of gas contained in the pore space – the amount of gas released as a result of the comminution process was studied. The results of gas balancing demonstrated that the pore space of the investigated dolomites was filled with gas in amounts from 3.19 cm3/kg to 45.86 cm3/kg. The obtained results of the rock material comminution to grains comparable – in terms of size – to the size of the pores of investigated rocks, along with asserting the presence of gas in the pore space of the studied dolomites, were regarded as a proof that the method of balancing gas in rocks via rock comminution is correct.

Go to article

Authors and Affiliations

Mateusz Kudasik
Anna Pajdak
ORCID: ORCID
Norbert Skoczylas
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The present elaboration gives the results of investigations carried out by the VLF method in September. 1980. in Fuglebersletta, in the Hornsund Fiord area, Spitsbergen. The aim of the investigations was to localize precisely the ore-bearing veins and to trace their course.

Go to article

Authors and Affiliations

Janusz Antoniuk
Download PDF Download RIS Download Bibtex

Abstract

In 2011, the Miedzi Copper Corporation (MCC) initiated its exploration program involving deep Cu-Ag deposits in the Fore-Sudetic Monocline. A very vast study area was adopted, along with the use of a wide range of research instruments. In the years 2011–2013 the exploration of MCC involved 21 concession areas. The location of concessions for exploration as well as exploration and prospecting was based on the known prognostic and hypothetical areas with confirmed contact of the Rote Fäule facies with the reduced facies, placed in the proximity of the Zechstein elevations. In 2012 and 2013, historical boreholes drilled mainly by the petroleum industry were logged, and in cases where the preservation of rock material allowed, samples were collected for chemical analyses. Moreover, a wide range of specialized examinations was performed, involving organic chemistry, coal macerals, vitrinite reflectance and petrography, with a particular emphasis on the Rock Eval method. The latter allows the presence of the so-called strong Rote Fäule associated with the presence of the richest mineralized horizons to be established. It was equally important for the purpose of exploration to perform the reprocessing of geophysical data using the innovative method of effective reflection coefficients. This allows transforming a conventional seismic image into an impulse form of seismic records, meaning a temporal sequence of coefficients, whose sections can be correlated with the logs of historical boreholes in order to trace the course of lithological series. This method provides a much higher accuracy for determining structural elements crucial for exploration than before, suggesting the presence of various tectonic phenomena important for mineralization. As a result, a more detailed mineralization distribution model was obtained and the so-called sweet spots were pinpointed, becoming an object of further drilling exploration. The number of active concessions was reduced to 6, which resulted largely not just from the absence of ore, but also from economic premises. The drilling program initiated in 2013 and still continued today allowed the discovery and preliminary documentation of three copper and silver deposits in the Fore-Sudetic Monocline. These are the Mozów and Sulmierzyce deposits, where the presence of prospective areas was previously recorded, as well as the Nowa Sól deposit, discovered in the so-called green field, where no ore exploration was previously conducted. At the current stage of identification, each of these deposits contains resources exceeding 5 million tons of equivalent copper, and the performed economic analyses indicate the viability of their extraction using the modern methods of shaft sinking, air conditioning and waste management.

Go to article

Authors and Affiliations

Krzysztof Zieliński
Stanisław Speczik
Kinga Małecka
Download PDF Download RIS Download Bibtex

Abstract

The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.

Go to article

Authors and Affiliations

Xiufeng Zhang
Ganqiang Tao
Zhonghua Zhu
Download PDF Download RIS Download Bibtex

Abstract

An attempt to summarize the primary iron raw materials and steel market’s hundred years history as well as influence of economic indicators on the iron ore deposit qualification for extraction has been undertaken in the paper. Steel products are crucial to the world economy, and their production has a major impact on the environment. The main factor is the huge scale of the production and growth rate, unprecedented among minerals. Iron ore and concentrates production has increased more than thirty times over the past century, and the geological resource base at the current level of consumption has provided almost 250 years of sufficiency. There have been tremendous changes in the world geography of the ore and steel industry. The iron ore mining industry is the driver of other economic activities (land transport, freight, metallurgy) and involves huge capital and human resources. The consumption of iron raw materials is also considered as an important indicator of the countries development and current or even future economic situation. Population growth remains one of the key stimulating factors. The prices of ore and iron concentrates depend on the quality of the raw material, delivery conditions, market balance and the weight of the ordered cargo. They are usually the subject of negotiations. In the past, they were long-term contracts, while short-term (yearly, quarterly) and current spot transactions are now significant. The prices of ores and concentrates in relation to steel prices are showing a strong correlation. The average iron content of the reserves has been reduced in the largest producers in the 21st century, however it does not translate into the quality of mining output. Exploitation of the richer parts of the mineral deposit is usually carried out. The high content of iron in the output is a response to the technological requirements of the metallurgy where the blast furnace charge should contain at least 56% Fe and 5–8% FeO. The current surplus of geological-mining supply (large resource base) justifies that a mineral deposit choice, destined for excavation, is economic profit maximization as well as social and environmental considerations.

Go to article

Authors and Affiliations

Mariusz Krzak
Andrzej Paulo
Download PDF Download RIS Download Bibtex

Abstract

The presented article describes the relationship between lithological and facies development of reservoir rocks in the area of the roof elevation of the Weissliegend sandstones, with a particular emphasis on the influence of elevation on the occurrence of low mineralization zones in the deposit area. To illustrate the variability of the deposit parameters, closely related to the facies and lithological conditions of the host rocks, three-dimensional lithological and geochemical models for two research areas were developed using the geostatistical methods and based on field observations and the sampling of the deposit. The research area includes parts of the Northern Elevation of Rudna and the surrounding depressions within the boundaries of the Sieroszowice and Rudna deposits. Based on cross-sections of the 3D models, a different deposit formation in the roof elevation area of sandstone formations has been characterized; the lithological profile is defined as „atypical” due to the absence of a copper-bearing shale series, the most characteristic layer for copper ore deposits in the Fore -Sudetic monocline. Large variations in the shape of the deposit and the irregular boundaries of both balance mineralization and enclaves of gangue have been confirmed. The presence of large-scale enclaves of igneous rock in the entire profile of the Lower Zechstein rocks (areas without the balance copper mineralization) and small areas of gangue (sandstone) enriched with anhydrite binders adjacent to the parts of balance deposit located in argillaceous sandstone has been revealed. The possibility of the occurrence of gangue, in the area of the roof elevation of the Weissliegend sandstones directly adjacent to the border with calcareous dolomite, and irregular gangue partings in sandstone formations in the balance deposit was indicated. In addition, small areas of strong enrichment in Cu sulphides were observed in the contact zones between sulphate and clay binders in the Weissliegend sandstone series.

Go to article

Authors and Affiliations

Wojciech Kaczmarek
Mariusz Dudek
Katarzyna Golda
Monika Wasilewska-Błaszczyk
Download PDF Download RIS Download Bibtex

Abstract

Iron ore blending in an open-pit mine is an important means to ensure ore grade balance and resource recycling in iron mine industrial production. With the comprehensive recovery and utilisation of resource mining, the multi-source and multi-target ore blending method has become one of the focuses of the mining industry. Scientific and reasonable ore blending can effectively reduce the transportation cost of the enterprise. It can also ensure that the ore grade, washability index and iron carbonate content meet the requirements of the concentrator and significantly improve the comprehensive utilisation rate and economic benefits of the ore. An ore blending method for open-pit iron ore is proposed in this paper. The blending method is realised by establishing the ore blending model. This model aims to achieve maximum ore output and the shortest transportation distance, ore washability index, total iron grade, ferrous iron grade and iron carbonate content after the ore blending meets the requirements. This method can meet the situation of a single mine to a single concentrator and that of a single mine to multiple concentrators. According to the results of ore blending, we can know the bottleneck of current production. Through targeted optimisation management, we can tap the production potential of an open-pit mine.
Go to article

Authors and Affiliations

Jiang Yao
1
Chunhui Liu
2
Guichen Huang
2
Kai Xu
2
Qingbo Yuan
2

  1. Northeastern University, College of Resources and Civil Engineering, Shenyang, Liaoning 110819, China
  2. Ansteel Group GUANBAOSHAN Mining Co., Ltd, Anshan, Liaoning 114000, China
Download PDF Download RIS Download Bibtex

Abstract

Belts are widely applied in mine production for conveying ores. Understanding ore granularity, which is a crucial factor in determining the effectiveness of crushers, is vital for optimising production efficiency throughout the crushing process and ensuring the success of subsequent operations. Based on edge computing technology, an online detection method is investigated to rapidly and accurately obtain ore granularity information on high-speed conveyor belts. The detection system utilising machine vision technology is designed in this paper. The high-speed camera set above the belt is used to collect the image of the ore flow, and the collected image is input into the edge computing device. After binary, grey morphology and convex hull algorithm processing, the particle size distribution of ore is obtained by statistical analysis. Finally, a 5G router is used to output the settlement result to a cloud platform. In the GUANBAOSHAN mine of Ansteel Group, the deviation between manual screening and image particle size analysis was studied. Experimental results show that the proposed method can detect the ore granularity, ore flow width and ore flow terminal in real-time. It can provide a reference for the staff to adjust the parameters of the crushing equipment, reduce the mechanical loss and the energy consumption of the equipment, improve the efficiency of crushing operation and reduce the failure rate of the crusher.
Go to article

Authors and Affiliations

Jiang Yao
1
Yinbo Xue
2
Xiaoliang Li
2
Lei Zhai
2
Zhenyu Yang
3
Wenhui Zhang
3

  1. Northeastern University, China
  2. Chinese Academy of Sciences Allwin Technology Co., Ltd, China
  3. Ansteel Group Guanbaoshan Mining Co., Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

The basis for a mineral deposit delimitation is a qualitative and quantitative assessment of deposit parameters, qualifying a deposit as an economically valuable object. A conventional approach to the mineral deposit recognition and a deposit detailed parameters qualification in the initial stages of development work in the KGHM were presented in the paper. The goals of such recognition were defined, which through a gradual detailed expansion, resulting from the information inflow, allows for the construction of a more complete decision-making model. The description of the deposit parameters proposed in the article in the context of fuzzy logic, enables a presentation of imprecise statements and data, which may be a complement to a traditional description. Selected non-adjustable and adjustable s-norm and t-norm operators were demonstrated. Operators effects were tested for selected ore quality parameters (copper content and deposit thickness) by constructing adequate membership functions. In a practical application, the use of chosen fuzzy logic operators is proposed for the assessment of the qualitative parameters of copper-silver ore in the exploitation blocks for one of the mines belonging to KGHM Polish Copper S.A. The considerations have been extended by including the possibility of using compensation operators.

Go to article

Authors and Affiliations

Mariusz Krzak
Paweł Panajew
Download PDF Download RIS Download Bibtex

Abstract

The Sin Quyen deposit is characterized by a high accumulation of rare earth elements (REE). This deposit belongs to the IOCG type copper deposits (Iron Oxide Copper-Gold Deposits). In the deposit, the REE carrier minerals have been identified as follow: allanite, titanite, uraninite, monazite, apatite, chevkinite, aeschynite, bastnäsite, and epidote. In the skarn zone, contents of allanite range from single percentages to 10% in hand-size specimens. Locally, minerals of epidote subgroup which occur in large amounts in the host rocks are important. The studied allanites have concentrations of: REE (14–27 wt%), Ca (9–16 wt%), Al (8–19 wt%), Si (26–34 wt%) and Fe (12–21 wt%). Two populations of allanite are documented, the first is texturally older and probably related to the Ca-K alteration (second stage of crystallization). This population has higher REE concentration ranging from 20 to 27 wt%. The second population is texturally younger and has a lower total REE concentration ranging from 14 to 19.9 wt%, which occur mostly as a rim surrounding the older and likely arose during the K alteration with Cu-Au mineralization (third crystallization). The chemical composition indicates that the studied allanites belong to the Ce-La-ferriallanite family, with low ΣHREE and an average of 0.21 wt.%. A temperature of 355°C which was calculated using a value of δ34S isotopes is interpreted as a temperature of the second crystallization stage of allanite. In the studied deposit, excluding allanite and titanite, the other bearing REE minerals have an insignificant role in the REE balance, since they either have the total content of REE, which is often close to the WDS detection limit (rf. the epidote subgroup), or their only occur at the single points. The content of total REE in accessory uraninites is high and range from 1.311% up to 7.959% with an average value of 4.852%.
Go to article

Authors and Affiliations

Nguyen Dinh Chau
1
ORCID: ORCID
Jadwiga Pieczonka
1
ORCID: ORCID
Adam Piestrzyński
1
ORCID: ORCID
Le Khanh Phon
2
Duong Van Hao
2

  1. AGH Unversity of Science and Technology, Kraków, Poland
  2. Hanoi University of Mining and Geology, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Due to the occurrence of zinc and lead ore deposits in dolomite rocks, the sphalerite concentrates obtained from these ores contain an admixture of dolomite. In practice, a substantial amount of magnesium included in zinc ores passes to the last production stage, i.e. zinc electrolysis. The magnesium present in electrolyte impairs electrical conductance and appears in the technical and economical indexes. This paper deals the attempts to remove magnesium removal from initial sphalerite concentrates by means of chemical flotation using spent electrolyte derived from zinc electrolysis. The authors attempt to substantiate the existing relationships, as well as to derermine the optimum conditions for the procedure suggested. The leaching efficiency of magnesium amounted to about 80%, and is dependent upon the stage of the leaching. Losses of zinc were below 2%, and the magnesium concentration in solution amounted to about 20%. These solution can produce magnesium and zinc, which will be presented in the following paper.

Go to article

Authors and Affiliations

Andrzej Jarosiński
Adam Kozak
Sylwester Żelazny
Piotr Radomski
Download PDF Download RIS Download Bibtex

Abstract

The stable supply of iron ore resources is not only related to energy security, but also to a country’s sustainable development. The accurate forecast of iron ore demand is of great significance to the industrialization development of a country and even the world. Researchers have not yet reached a consensus about the methods of forecasting iron ore demand. Combining different algorithms and making full use of the advantages of each algorithm is an effective way to develop a prediction model with high accuracy, reliability and generalization performance. The traditional statistical and econometric techniques of the Holt–Winters (HW) non-seasonal exponential smoothing model and autoregressive integrated moving average (ARIMA) model can capture linear processes in data time series. The machine learning methods of support vector machine (SVM) and extreme learning machine (ELM) have the ability to obtain nonlinear features from data of iron ore demand. The advantages of the HW, ARIMA, SVM, and ELM methods are combined in various degrees by intelligent optimization algorithms, including the genetic algorithm (GA), particle swarm optimization (PSO) algorithm and simulated annealing (SA) algorithm. Then the combined forecast models are constructed. The contrastive results clearly show that how a high forecasting accuracy and an excellent robustness could be achieved by the particle swarm optimization algorithm combined model, it is more suitable for predicting data pertaining to the iron ore demand.
Go to article

Bibliography

1. Al-Fattah, S.M. 2020. A new artificial intelligence GANNATS model predicts gasoline demand of Saudi Arabia. Journal of Petroleum Science and Engineering 194.
2. Al-Hnaity, B. and Abbod, M. 2016. Predicting Financial Time Series Data Using Hybrid Model. Intelligent Systems and Applications 650, pp. 19–41.
3. Bates, J.M. and Granger, C.W.J. 1969. The combination of forecasts. Journal of the Operational Research Society 20(4), pp. 451–468.
4. Bikcora et al. 2018 – Bikcora, C., Verheijen, L. and Weiland, S. 2018. Density forecasting of daily electricity demand with ARMA-GARCH, CAViaR, and CARE econometric models. Sustainable Energy Grids and Networks 13, pp. 148–156.
5. Box, G.E.P. and Jenkins, G.M. 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
6. Davies, N.J.P. and Petruccelli, J.D. 1988. An Automatic Procedure for Identification, Estimation and Forecasting Univariate Self Exiting Threshold Autoregressive Models. Journal of the Royal Statistical Society 37(2), pp. 199–204.
7. D’Amico et al. 2020 – D’Amico, A., Ciulla, G., Tupenaite, L. and Kaklauskas, A. 2020. Multiple criteria assessment of methods for forecasting building thermal energy demand. Energy and Buildings 224, 110220.
8. Eberhart, R. and Kennedy, J. 1995. A new optimizer using particle swarm theory. [In:] MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43.
9. Holland, J.M. 1975. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor.
10. Huang et al. 2006 – Huang, G.B., Zhu, Q.Y. and Siew, C.K. 2006. Extreme learning machine: theory and applications. Neurocomputing 70, pp. 489–501.
11. Jia, L.W. and Xu, D.Y. 2014. Analysis and Prediction of the Demand for Iron Ore: Using Panel, Grey, Co-Integration and ARIMA Models. Resources Science 36(7), pp. 1382–1391.
12. Kazemzadeh et al. 2020 – Kazemzadeh, M.R., Amjadian, A. and Amraee, T. 2020. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 204, 117948
13. Liu et al. 2016 – Liu, X.L., Moreno, B. and Garcia, A.S. 2016. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors. Energy 115, pp. 1042–1054.
14. Ma et al. 2013 – Ma, W.M., Zhu, X.X. and Wang, M.M. 2013. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resources Policy 38, pp. 613–620.
15. Mi et al. 2018 – Mi, J., Fan, L., Duan, X. and Qiu, Y. 2018. Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model. Mathematical Problems in Engineering 2018, pp. 1–11.
16. National Bureau of Statistics of China. Output of Industrial Products. [Online] https://data.stats.gov.cn/easyquery. htm?cn=C01&zb=A0E0H&sj=2019 [Accessed: 2020-12-30].
17. National Bureau of Statistics of China, 2018. Chinese Mining Yearbook. Beijing: China Statistics Press.
18. Song et al. 2018 – Song, J.J., Wang, J.Z. and Lu, H.Y.2018. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Applied Energy 215, pp. 643–658.
19. Vapnik, V.N. 1995. The Nature of Statistical Learning Theory. New York: Springer.
20. Wang et al. 2018 – Wang, J., Luo, Y.Y., Tang, T.Y. and Peng, G. 2018. Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting. Chaos, Solitons and Fractals 108, pp. 136–147.
21. Wang et al. 2012 – Wang, J.J., Wang, J.Z., Zhang, Z.G. and Guo, S.P. 2012. Stock index forecasting based on a hybrid model. Omega-International Journal of Management Science 40, pp. 758–766.
22. Wang et al. 2010 – Wang, J.Z., Zhu, S.L., Zhang, W.Y. and Lu, H.Y. 2010. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 35, pp. 1671–1678.
23. Wang et al. 2020 – Wang, Z.X., Zhao, Y.F. and He, L.Y. 2020. Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average. Applied Soft Computing 94.
24. Winters, P.R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6(3), pp. 324–42.
25. Zhang et al. 2019 – Zhang, S.H., Wang, J.Y. and Guo, Z.H. 2019. Research on combined model based on multi- -objective optimization and application in time series forecast. Soft Computing 23, pp. 11493–11521.
26. Zhang et al. 2017 – Zhang, Y., Li, C. and Li, L. 2017. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy 190, pp. 291–305.
27. Zhou et al. 2019 – Zhou, Z., Si, G.Q., Zheng, K., Xu, X., Qu, K. and Zhang, Y.B. 2019. CMBCF: A Cloud Model Based Hybrid Method for Combining Forecast. Applied Soft Computing 85, 105766.
28. Zhou, Z.H. 2016. Machine Learning. Beijing: Tsinghua University Press, 425 pp. ( in Chinese).

Go to article

Authors and Affiliations

Min Ren
1
Jianyong Dai
2
Wancheng Zhu
3
Feng Dai
3
ORCID: ORCID

  1. Northeastern University, Shenyang, China
  2. University of South China, Hengyang, China
  3. Northeastern University, Shenyang
Download PDF Download RIS Download Bibtex

Abstract

Steel and cast-iron products, due to their low price and beneficial properties, are the most widely used among metals; their consumption has become an indicator of the economic development of countries. The characteristics of iron raw materials, in relation to current metallurgical requirements, are presented in the present this article. The globalization of the trade and development of steelmaking technologies have caused significant changes in the quality of raw materials in the last half-century forcing improvements in processing technologies. In many countries, standard concentrates (at least 60% Fe) are almost twice as rich as those processed in the mid-20th century. Methods of quality assessment have been improved and quality standards tightened.

The quality requirements for the most important raw materials ‒ iron ores and concentrates, steel scrap, major alloy metals, coking coal, and coke, as well as gas and other energy media ‒ are reviewed in the present paper. Particular attention is paid to the quality testing methodology. The quality of many raw materials is evaluated multi-parametrically: both chemical and physical characteristics are important. Lower-quality parameters in raw materials equate to significantly lower prices obtained by suppliers in the market.

The markets for these raw materials are diversified and governed by separate sets of newly introduced rules. Price benchmarks (e.g. for standard Australian metallurgical coal) or indices (for iron concentrates) apply. Some raw materials are quoted within the framework of the commodity market system (certain alloying components and steel scrap). The abandonment of the long-established system of multi-annual contracts has led to wide fluctuations in prices, which have reached a scale similar to that of other metals.

Go to article

Authors and Affiliations

Mariusz Krzak
Andrzej Paulo
Download PDF Download RIS Download Bibtex

Abstract

In order to achieve accurate identification and segmentation of ore under complex working conditions, machine vision and neural network technology are used to carry out intelligent detection research on ore, an improved Mask RCNN instance segmentation algorithm is proposed. Aiming at the problem of misidentification of stacked ores caused by the loss of deep feature details during the feature extraction process of ore images, an improved Multipath Feature Pyramid Network (MFPN) was proposed. The network firstly adds a single bottom-up feature fusion path, and then adds with the top-down feature fusion path of the original algorithm, which can enrich the deep feature details and strengthen the fusion of the network to the feature layer, and improve the accuracy of the network to the ore recognition. The experimental results show that the algorithm proposed in this paper has a recognition accuracy of 96.5% for ore under complex working conditions, and the recall rate and recall rate function values reach 97.4% and 97.0% respectively, and the AP75 value is 6.84% higher than the original algorithm. The detection results of the ore in the actual scene show that the mask size segmented by the network is close to the actual size of the ore, indicating that the improved network model proposed in this paper has achieved a good performance in the detection of ore under different illumination, pose and background. Therefore, the method proposed in this paper has a good application prospect for stacked ore identification under complex working conditions.
Go to article

Authors and Affiliations

Hehui Zhou
1
ORCID: ORCID
Gaipin Cai
1 2
Shun Liu
1

  1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, China
  2. Jiangxi Province Engineering Research Center for Mechanical and Electrical of Mining and Metallurgy, China
Download PDF Download RIS Download Bibtex

Abstract

This paper is focused on multiple soft fault diagnosis of linear time-invariant analog circuits and brings a method that achieves all objectives of the fault diagnosis: detection, location, and identification. The method is based on a diagnostic test arranged in the transient state, which requires one node accessible for excitation and two nodes accessible for measurement. The circuit is specified by two transmittances which express the Laplace transform of the output voltages in terms of the Laplace transform of the input voltage. Each of these relationships is used to create an overdetermined system of nonlinear algebraic equations with the circuit parameters as the unknown variables. An iterative method is developed to solve these equations. Some virtual solutions can be eliminated comparing the results obtained using both transmittances. Three examples are provided where laboratory or numerical experiments reveal effectiveness of the proposed method.
Go to article

Bibliography

[1] A. Guney, G. Önal and T. Atmaca, “New aspect of chromite gravity tailings re-processing”, Minerals Engineering, Vol., 24, no 11, pp. 1527- 1530, 2001. https://doi.org/10.1016/S0892-6875(01)00165-0.
[2] W.M. Ambrósa, C.H. Sampaioa, Bogdan G. Cazacliub, Paulo N.Conceiçãoa and Glaydson S.dos Reisab, “Some observations on the influence of particle size and size distribution on stratification in pneumatic jigs”, Powder Technology, Vol. 342, pp. 594-606, 2019. https://doi.org/10.1016/j.powtec.2018.10.029.
[3] M.V. Verkhoturov, “Gravitational enrichment methods”. Moscow: MAX Press, 2006, pp.160- 180. ISBN 5-317-01710-6.
[4] Ya-li Kuang, Jin-Wu Zhuo, Li Wang, Chao Yang, “Laws of motion of particles in a jigging process”, Journal of China University of Mining and Technology, Vol. 18, no 4, pp. 575-579, December 2008. https://doi.org/10.1016/S1006-1266(08)60297-7.
[5] S.Cierpisz. “A dynamic model of coal products discharge in a jig”, Minerals Engineering, Vol. 105, pp. 1-6, 1 May 2017. https://doi.org/10.1016/j.mineng.2016.12.010.
[6] B.A. Suleimenov and Ye.A. Kulakova, “The prospects for the use of intelligent systems in the processes of gravitational enrichment”, Informatyka, Automatyka, Pomiary w Gospodarcei Ochronie Środowiska, Vol. 9, no 2, pp. 46-49, 2019. https://doi.org/10.5604/01.3001.0013.2547.
[7] Y.R. Murthy, S.K. Tripathy, C.R. Kumar, “Chrome ore beneficiation challenges & opportunities – A review”, Minerals Engineering, Vol. 24, no 5, pp. 375-380, 2011, DOI: https://doi.org/10.1016/j.mineng.2010.12.001.
[8] L. Panda, S.K. Tripathy, “Performance prediction of gravity concentrator by using artificial neural network – A case study”. International Journal of Mining Science and Technology, Vol. 24, no 4, pp. 461-465, 2014. https://doi.org/10.1016/j.ijmst.2014.05.007.
[9] Y.R. Murthy, S.K. Tripathy, C.R. Kumar, “Chrome ore beneficiation challenges & opportunities-a review”, Minerals Engineering, Vol. 36, no 5, pp. 375-380, 2014, https://doi.org/10.1016/j.ijmst.2014.05.007.
[10] T. J. Stich, and J.K. Spoerre and T.Velasco, “The application of artificial neutral networks to monitoring and control of an induction hardening process”, Journal of Industrial Technology, Vol. 16, no 1, pp.168-174, 2015.
[11] L.Panda, A.K. Sahoo, S.K Tripathy and others, “Application of artificial neural network to study the performance of jig for beneficiation of noncoking coal”, Fuel, Vol. 97, pp. 151-156, 2012. https://doi.org/10.1016/j.fuel.2012.02.018.
[12] K. Shravan and R. Venugopal, “Performance analyses of jig for coal cleaning using 3D response surface methodology”, International Journal of Mining Science and Technology, Vol. 27, no 2, pp 333-337, March 2017.
[13] B.A. Suleimenov and E.A. Kulakova, “Development of intelligent system for optimal process control”, Resource–saving technologies of raw–material base development in mineral mining and processing: Multy–authored monograph, Universitas Publishing, Romania, Petrosani: 2020, pp.198-217. URI: ep3.nuwm.edu.ua/id/eprint/18359.
[14] V. Mashkov, A. Smolarz, V. Lytvynenko, and K. Gromaszek, “The problem of system fault-tolerance”, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 4, no. 4, pp. 41-44, 2014, https://doi.org/10.5604/20830157.1130182
[15] M. S. Islam, P. Nepal and others. “A knowledge-based expert system to assess power plant project cost overrun risks”, Expert Systems With Applications, Vol. 136, pp. 12-32, 2019. https://doi.org/10.1016/j.eswa.2019.06.030.
[16] B.A.Suleimenov and E.A Kulakova, “Creation the knowledge base of the intelligent control system for gravitational enrichment processes using expert information processing methods”, Vestnik KazNRTU, Vol. 5, no 141, pp. 590-597, October 2020.
[17] Ye.A. Kulakova and B.A. Suleimenov, “Development and Research of Intelligent Algorithms for Controlling the Process of Ore Jigging”, International Journal of Emerging Trends in Engineering Research, Vol. 8, no 9, pp. 6240-6246, September 2020. https://doi.org/10.30534/ijeter/2020/21589202.
[18] N. Siddique. “Intelligent Control”, Springer International Publishing, Switzerland, 2014, pp.54-78. https://doi.org/10.1007/978-3-319-02135-5.
[19] P.V. de Campos Souza, “Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature” Applied Soft Computing. Vol. 92, pp. 106275, July 2020. https://doi.org/10.1016/j.asoc.2020.106275.
[20] A.Tripathy, L.Panda, A.K Sahoo, S.K. Biswal, R.K Dwari, A.K. Sahu, “Statistical optimization study of jigging process on beneficiation of fine size high ash Indian non-coking coal”, Advanced Powder Technology, Vol. 27, no 4, pp. 1219-1224, 2016. https://doi.org/10.1016/j.apt.2016.04.006.
[21] A.K. Mukherjeea and B.K. Mishrab, “An integral assessment of the role of critical process parameters on jigging”, International Journal of Mineral Processing Vol. 81, no 3, pp. 187-200, December 2006. https://doi.org/10.1016/j.minpro.2006.08.005.
[22] N.(K.)M. Faber, “Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration”, Chemometrics and Intelligent Laboratory Systems, Vol. 49, no 1, pp. 79-89, 6 September 1999, https://doi.org/10.1016/S0169-7439(99)00027-1.
Go to article

Authors and Affiliations

Yelena Kulakova
1
Waldemar Wójcik
2
Batyrbek Suleimenov
1
Andrzej Smolarz
2

  1. Satbaev University, Almaty, Kazakhstan
  2. Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the impacts of overprinting of tectonic and plutonic events on the mineralization of the Duna Pb-Ba ore deposit, according to geologic settings and fluid inclusion studies. The Duna carbonate-hosted deposit contains a significant amount of Ag (18.9–264.3 ppm ), Cu (77–41600 ppm), Sb (32.7–11000 ppm), Sr (63.5– 15100 ppm), and Fluid inclusions with 7.34–23.65 wt.% NaCl equivalent. The homogenization temperature of about 110–285°C, as well as the paragenesis of the minerals shows a difference compared with other Pb-Zn deposits such as the Irish-type and MVT. The ore mineralization in the Duna mine occurred as stratabound, open space-filling, and along the brecciated fault zones. The concordant (stratabound) type of mineralization, with salinity and homogenization temperature of 18.54 to 23.65 wt.% NaCl equivalent, and 113°C to 165°C respectively, is usually typical of MVT-ore deposits, which in this area evolved during the Early Cimmerian orogeny and was later interrupted by mineralization along younger brecciated fault zones with salinity and homogenization temperature of 7.34 to 23.65 wt.% NaCl equivalent, and 113°C to 285°C respectively. This discordant mineralization, which occurred along the faults, formed by the end of the Late Cretaceous and during the Cenozoic as a result of the intrusion of a plutonic mass, and is comparable to the Irish-type ore deposits.
Go to article

Authors and Affiliations

Alireza Sadeghi
1
Saeid Hakimi Asiabar
2
Nima Nezafati
1 3
Alireza Ganji
2
Soumyajit Mukherjee
4

  1. Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  2. Department of Geology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  3. German Mining Museum, Department of Archaeometallurgy, Bochum, Germany
  4. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
Download PDF Download RIS Download Bibtex

Abstract

The article describes the influence of anomalous values and local variability on the structure of variability and the estimation of deposit parameters. The research was carried out using statistical and geostatistical methods based on the Pb accumulation index in the shale series in part of the Cu-Ag ore deposit, LGCD (Lubin-Głogów Copper District). The authors recommend the use of a geostatistical tool, the so-called semivariogram cloud to determine the anomalous values. Anomalous values determined by the geostatistical method and removed from the dataset have resulted in a significant reduction of the relative variability of data, which is still very large in the case of the analyzed parameter or parameters with similar statistical features such as extreme variability and strongly asymmetric distribution. Calculations of the resources of this element can be treated only as estimates and formally classified to category D. The hypothetical assumption of the absence of sampling errors, resulting in a decrease in the magnitude of local variation, leads to a certain reduction of the median error of resource estimates. However, they are still high (> 35%). This is due to the large natural variability of the accumulation index of Pb on the local observation scale. The current method for collecting samples from mine workings of the Cu-Ag deposits in the Lubin-Głogów Copper District (LGCD), aimed at the proper assessment of copper resources, the Cu content, and at estimating the quality of copper output, makes it impossible to achieve an accuracy of estimates of Pb resources similar to that obtained for the main metal. Theoretically, this effect can be achieved by a strong concentration of the sample collection points and thanks to a multiple increase in the samples weight; this, however, is unrealistic for both economic and organizational reasons. It is therefore to be expected that the assessment of Pb resources and other accompanying elements of similar statistical features (e.g. As), located in parts of the deposit where mining activities are to be carried out, will be subject to significant errors.

Go to article

Authors and Affiliations

Justyna Auguścik
Jacek Mucha
Download PDF Download RIS Download Bibtex

Abstract

Backbreak is an undesirable phenomenon in blasting operations, which can bedefined as the undesirable destruction of rock behind the last row of explosive holes. To prevent and reduce its adverse effects, it is necessary to accurately predict backbreak in the blasting process. For this purpose, the data obtained from 66 blasting operations in Gol-e-Gohar iron ore mine No. 1 considering blast pattern design Parameters and geologic were collected. The Pearson correlation results showed that the parameters of the hole height, burden, spacing, specific powder, number of holes, and the uniaxial compressive strength had a significant effect on the backbreak. In this study, a multilayer perceptron artificial neural network with the 6-12-1 architecture and six multiple linear and nonlinear statistical models were used to predict the backbreakin the blasting operations. The results of this study demonstrated that the prediction rate of backbreak using the artificial neural network model with R2 = 0.798 and the rates of MAD, MSE, RMSE and, MAPE were0.79, 0.93, 0.97 and, 11.63, respectively, showed fewer minor error compared to statistical models. Based on the sensitivity analysis results, the most important parameters affecting the backbreak, including the hole height, distance between the holes in the same row, the row spacing of the holes, had the most significant effect on the backbreak, and the uniaxial compressive strength showed the lowest impact on it.
Go to article

Authors and Affiliations

Abbas Khajouei Sirjani
1
ORCID: ORCID
Farhang Sereshki
1
ORCID: ORCID
Mohammad Ataei
1
ORCID: ORCID
Mohammad Amiri Hosseini
2
ORCID: ORCID

  1. Shahrood University of Technology, Iran
  2. Technology Management and Research of Gol-e-gohar, Iran

This page uses 'cookies'. Learn more