Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

Go to article

Authors and Affiliations

Paweł Madejski
Piotr Żymełka
Daniel Nabagło
Tomasz Janda
Download PDF Download RIS Download Bibtex

Abstract

The underground complicated testing environment and the fan operation instability cause large random errors and outliers of the wind speed signals. The outliers and large random errors result in distortion of mine wind speed monitoring, which possesses safety hazards in mine ventilation system. Application of Kalman filter in velocity monitoring can improve the accuracy of velocity measurement and eliminate the outliers. Adaptive Kalman Filter was built by automatically adjusting process noise covariance and measurement noise covariance depending on the differences between measured and expected speed signals. We analyzed the fluctuation of airflow flow using data of wind speed flow and distribution characteristics of the tunnel obtained by the Laser Doppler Velocimetry system (LDV) studies. A state-space model was built based on the tunnel airflow fluctuations and wind speed signal distribution. The adaptive Kalman Filter was calculated according to the actual measurement data and the Expectation Maximization (EM) algorithm. The adaptive Kalman filter was used to shield fluid pulsation while preserving system-induced fluctuations. Using the Kalman filter to treat offline wind speed signal acquired by LDV, the reliability of Kalman filter wind speed state model and the characteristics of adaptive Kalman Filter were investigated. Results showed that the adaptive Kalman filter effectively eliminated the outliers and reduced the root-mean-squares error (RMSE), and the adaptive Kalman filter had better performance than the traditional Kalman filter in eliminating outliers and reducing RMSE. Field experiments in online wind speed monitoring were conducted using the optimized adaptive Kalman Filter. Results showed that adaptive Kalman filter treatment could monitor the wind speed with smaller RMSE compared with LVD monitor. The study data demonstrated that the adaptive Kalman filter is reliable and suitable for online signal processing of mine wind speed monitor.

Go to article

Authors and Affiliations

De Huang
Jian Liu
Lijun Deng
Xuebing Li
Ying Song

This page uses 'cookies'. Learn more