Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure.

Go to article

Authors and Affiliations

Magdalena Orszulik
Adam Fic
Tomasz Bury
Jan Składzień
Download PDF Download RIS Download Bibtex

Abstract

Exploitation of hard coal seams by roadway system is applied by two coal mines in southern Poland in Upper Silesian Basin. It is a secondary mining exploitation carries out in safety pillars of urban areas and shafts within mining areas of closed coal mines. Roadway system is the excavation process of gateways which are made in parallel order leaving coal pillars between them. An optimal width of coal pillar makes roadway stable and reduces subsidence of terrain surface. The article presents results of subsidence simulation caused by partial extraction using empirical and numerical methods on the example of one exploitation field of “Siltech” coal mine. The asymptotic state of subsidence was considered after mining ceased in the study area. In order to simulate of subsidence, numerical model of rock mass and model of Knothe-Budryk theory were calibrated. Simulation of vertical displacements in numerical method was carried out using RS3 program by Rocscience based on finite element method. The assumption was made that model of rock mass is transversely isotropic medium, in which panels were designed according to order of extraction of coal seams. The results of empirical and numerical methods were compared with measured values of subsidence at benchmarks along drawn lines (subsidence profiles).

Go to article

Authors and Affiliations

Piotr Polanin
Andrzej Kowalski
ORCID: ORCID
Andrzej Walentek
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
Go to article

Authors and Affiliations

Andrzej J. Nowak
Tomasz Krysiński
Zbigniew Buliński
Download PDF Download RIS Download Bibtex

Abstract

This work presents the results of numerical modeling of Karman vortex street generation performed with ANSYS/FLUENT package application. The influence of the mechanical elements located downstream of the bluff body on the vortex frequency has been found during earlier laboratory investigations. Five various geometrical configurations have been tested. Considerable differences in pictures of distributions of pressure, horizontal and vertical velocities have appeared for various configurations. Qualitative as well as quantitative results are presented in the paper. They confirm the significant dependence of the Karman vortex street parameters on the meter configuration.

Go to article

Authors and Affiliations

Grzegorz Pankanin
Download PDF Download RIS Download Bibtex

Abstract

The Dez dam was commissioned in 1963 and since sediments accumulated in the reservoir up to an elevation of approximately 15m below the intake of the power tunnel. One of the possible measures to improve operation of the reservoir is by heightening of the existing dam. This paper describes the conducted procedure for static and thermal calibration of this 203m dam in Iran based on micro geodesies measurements. Also the nonlinear response of existing dam is investigated under maximum credible earthquake ground motions considering joint behavior and mass concrete cracking and safety of dam is evaluated for possible heightening. For thermal calibration of provided numerical model, transient thermal analysis was conducted and results were compared with thermometers records installed in central block. In addition, for static calibration; thermal distribution within dam body, dam self weight, hydrostatic pressure and silt load applied on the 3D fi nite element model of dam-reservoir-foundation were considered. Results show that the distribution of stresses will be critical within dam for heightening case under seismic loads in MCL.

Go to article

Authors and Affiliations

M.A. Hariri-Ardebili
H. Mirzabozorg
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a dynamic analysis of the damaged masonry building repaired with the Flexible Joint Method. Numerical analysis helped to determine the effect of the applied repairing method on natural frequencies as well as values of stresses and accelerations in the analyzed variants of numerical model. They confirmed efficiency of the proposed repair method.

Go to article

Authors and Affiliations

A. Kwiecień
P. Kuboń
Download PDF Download RIS Download Bibtex

Abstract

This paper constitutes the sensitivity study of application the Polar WRF

model to the Svalbard area with testing selected parameterizations, including planetary

boundary layer, radiation and microphysics schemes. The model was configured, using

three one-way nested domains with 27 km, 9 km and 3 km grid cell resolutions. Results

from the innermost domain were presented and compared against measured wind speed

and air temperature at 10 meteorological stations. The study period covers two months:

June 2008 and January 2009. Significant differences between simulations results occurred

for planetary boundary layer (PBL) schemes in January 2009. The Mellor-Yamada-Janjic

(MYJ) planetary boundary layer (PBL) scheme resulted in the lowest errors for air

temperature, according to mean error (ME), mean absolute error (MAE) and correlation

coefficient values, where for wind speed this scheme was the worst from all the PBL

schemes tested. In the case of June 2008, shortwave and longwave radiation schemes

influenced the results the most. Generally, higher correlations were obtained for January,

both for air temperature and wind speed. However, the model performs better for June

in terms of ME and MAE error statistics. The results were also analyzed spatially, to

summarize the uncertainty of the model results related to the analyzed parameterization

schemes groups. Significant variability among simulations was calculated for January

2009 over the northern part of Spitsbergen and fjords for the PBL schemes. Standard

deviations for monthly average simulated values were up to 3.5°C for air temperature

and around 1 m s-1 for wind speed.

Go to article

Authors and Affiliations

Natalia Pilguj
Bartosz Czernecki
Maciej Kryza
Krzysztof Migała
Leszek Kolendowicz
Download PDF Download RIS Download Bibtex

Abstract

The stability of gateroads is one of the key factors for the mining process of hard coal by a longwall system. Wrong designed and applied the gateroad support at the stage of drilling, may adversely affect the functionality of the gateroad and the safety of the crew throughout its existence.

The article presents the results of the underground tests and observations such as: convergence of the gateroad, stratification and the fractured zone range in the roof rocks, carried out in four longwall gateroads at the stage of their drilling.

The obtained test results were the basis for the assessment of the possibility of using a convergence control method in the design of the gateroad support. The method is based on three interdependent relationships, such as: Ground Reaction Curve (GRC), Longitudinal Displacement Profile (LDP), and a Support Characteristic Curve (SCC). All calculations were performed using numerical modeling in the Phase2 program, based on the finite element method (FEM).

Go to article

Authors and Affiliations

Andrzej Walentek
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of model research concerning the change of technology of argon blowing into liquid steel at the ladle furnace, using the dual plug system. The results of numerical simulations were verified with experimental data carried out on the water model device. The verified model was used to perform numerical simulations to predict the impact of using a new gas injection technology – with different flow rates – on the time to achieve the assumed degree of metal chemical homogenization after alloy addition. Simulation results show that argon blowing metal bath in dual plug mode can effectively reduce mixing time compared to conventional technology with the same gas flow rates. Generally, the use of the dual plug system is beneficial for reducing the bath mixing time, however, the assumed optimal proportion of gas blown through individual plug should be followed. Finally, numerical predictions were used to perform experimental melt under industrial conditions. Industrial verification has clearly confirmed the validity of numerical modeling and showed that also in industrial conditions, a shorter time of chemical homogenization was obtained for the dual plug system.
Go to article

Authors and Affiliations

M. Warzecha
1
A. Hutny
1
P. Warzecha
1
Z. Kutyła
2
T. Merder
3

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
  2. CMC Poland Sp. z o.o., 82 Piłsudskiego Str., 42-400 Zawiercie, Poland
  3. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasinskiego Str., 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As part of the work, the error level of simulations of uniform optical-fibre Bragg gratings was determined using the transitionmatrixmethod. The errorswere established by comparing the transmission characteristics of the structures obtained by simulation with the corresponding characteristics arrived at experimentally. To compile these objects, elementary properties of the characteristics were specified, also affecting the applications of Bragg gratings, and compared with each other. The level of error in determining each of these features was estimated. Relationships were also found between the size of the physical properties of Bragg gratings and the level of errors obtained. Based on the findings, the correctness of the simulation of structures with the said method was verified, giving satisfying results.

Go to article

Authors and Affiliations

Piotr Stępniak
Piotr Kisała
Download PDF Download RIS Download Bibtex

Abstract

Biskupin is one of the most recognizable archaeological site in Poland and Central Europe. The origins of the excavations dates back to year 1934 and had lasted almost continuously until 1974. In the framework of the grant from the Ministry of Culture and National Heritage interdisciplinary team of scientists from Archaeological Museum in Biskupin and Warsaw University of Technology performed multi-dimensional analysis of the settlement. Based on the integrated vector documentation, resulting from the photographic documentation, numerical models of structural systems of main types of buildings and defensive rampart were prepared. The aim of the analysis was a verification of the earlier findings of archaeological and architectural researches. The analysis allowed to verify both the arrangement of individual parts of structure of buildings, their work and the interconnection, as well as the possible dimensions of the individual components.

Go to article

Authors and Affiliations

Wojciech Terlikowski
ORCID: ORCID
Martyna Gregoriou-Szczepaniak
ORCID: ORCID
Ewa Sobczyńska
ORCID: ORCID
Kacper Wasilewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests of SCB (semi-circular beam) samples of asphalt concrete, subjected to the destructive effect of water and frost as well as the aging processes. The determined values of material parameters show significant dispersions, which makes the design of mixtures difficult. Statistical analysis of the test results supplemented by computer simulations made with the use of the proprietary FEM model was carried out. The main distinguishing feature of the model is the assignment of material parameters of coarse aggregate and bituminous mortar to randomly selected finite elements. The parameters of the mortar are selected by trial and error to match the numerical results to the experimental ones. The stiffness modulus of the bituminous mortar is, therefore, a substitute parameter, taking into account the influence of many factors, including material degradation resulting from the aging and changing environmental conditions, the influence of voids, and contact between the aggregate and the bituminous mortar. The use of the Monte Carlo method allows to reflect the scattering of the results obtained based on laboratory tests. The computational algorithm created in the ABAQUS was limited only to the analysis of the global mechanical bending response of the SCB sample, without mapping the failure process in detail. The combination of the results of laboratory tests usually carried out on a limited number of samples and numerical simulations provide a sufficiently large population of data to carry out a reliable statistical analysis, and to estimate the reliability of the material designed.
Go to article

Authors and Affiliations

Cezary Szydłowski
1
ORCID: ORCID
Łukasz Smakosz
2
ORCID: ORCID
Marcin Stienss
1
ORCID: ORCID
Jarosław Górski
2
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Highway and Transportation Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
  2. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

Go to article

Authors and Affiliations

Paweł Madejski
Piotr Żymełka
Daniel Nabagło
Tomasz Janda
Download PDF Download RIS Download Bibtex

Abstract

In many therapeutic applications of a pulsed focused ultrasound with various intensities the finite- amplitude acoustic waves propagate in water before penetrating into tissues and their local heating. Water is used as the matching, cooling and harmonics generating medium. In order to design ultrasonic probes for various therapeutic applications based on the local tissue heating induced in selected organs as well as to plan ultrasonic regimes of treatment a knowledge of pressure variations in pulsed focused nonlinear acoustic beams produced in layered media is necessary. The main objective of this work was to verify experimentally the applicability of the recently developed numerical model based on the Time- Averaged Wave Envelope (TAWE) approach (Wójcik et al., 2006) as an effective research tool for predicting the pulsed focused nonlinear fields produced in two-layer media comprising of water and tested materials (with attenuation arbitrarily dependent on frequency) by clinically relevant axially-symmetric therapeutic sources. First, the model was verified in water as a reference medium with known linear and nonlinear acoustic properties. The measurements in water were carried out at a 25◦C temperature using a 2.25 MHz circular focused (f/3.0) transducer with an effective diameter of 29 mm. The measurement results obtained for 8-cycle tone bursts with three different initial pressure amplitudes varied between 37 kPa and 113 kPa were compared with the numerical predictions obtained for the source boundary condition parameters determined experimentally. The comparison of the experimental results with those simulated numerically has shown that the model based on the TAWE approach predicts well both the spatial-peak and spatial-spectral pressure variations in the pulsed focused nonlinear beams produced by the transducer used in water for all excitation levels complying with the condition corresponding to weak or moderate source-pressure levels. Quantitative analysis of the simulated nonlinear beams from circular transducers with ka ≫ 1 allowed to show that the axial distance at which sudden accretion of the 2nd or higher harmonics amplitude appears is specific for this transducer regardless of the excitation level providing weak to moderate nonlinear fields. For the transducer used, the axial distance at which the 2nd harmonics amplitude suddenly begins to grow was found to be equal to 60 mm. Then, the model was verified experimentally for two-layer parallel media comprising of a 60-mm water layer and a 60-mm layer of 1.3-butanediol (99%, Sigma-Aldrich Chemie GmbH, Steinheim, Germany). This medium was selected because of its tissue-mimicking acoustic properties and known nonlinearity parameter B/A. The measurements of both, the peak- and harmonic-pressure variations in the pulsed nonlinear acoustic beams produced in two-layer media (water/1.3-butanediol) were performed for the same source boundary conditions as in water. The measurement results were compared with those simulated numerically. The good agreement between the measured data and numerical calculations has shown that the model based on the TAWE approach is well suited to predict both the peak and harmonic pressure variations in the pulsed focused nonlinear sound beams produced in layered media by clinically relevant therapeutic sources. Finally, the pulsed focused nonlinear fields from the transducer used in two-layer media: water/castor oil, water/silicone oil (Dow Corning Ltd., Coventry, UK), water/human brain and water/pig liver were predicted for various values of the nonlinearity parameter of tested media.

Go to article

Authors and Affiliations

Tamara Kujawska
Download PDF Download RIS Download Bibtex

Abstract

The generic mathematical model and computational algorithm considering hydrodynamics, heat and mass transfer processes during casting

and forming steel ingots and castings are offered. Usage domains for turbulent, convective and non-convective models are determined

depending on ingot geometry and thermal overheating of the poured melt. The expert system is developed, enabling to choose a

mathematical model depending on the physical statement of a problem.

Go to article

Authors and Affiliations

V.I. Bondarenko
V.V. Bilousov
F.V. Nedopekin
J.I. Shalapko
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the present work was to validate the numerical model for the pulse-step liquid steel alloying method using a physical simulator that enables the observation and recording of phenomena occurring during the continuous steel casting process. The facility under investigation was a single-nozzle tundish equipped with a dam. To physical trials the glass water model was made on a scale of 2:5. For the mathematical description of turbulence during liquid steel alloying process, the k-ε and k-ω models were employed in the simulations. Based on the computer simulations and physical trials carried out, alloy addition behaviour and mixing curves for different tundish alloy addition feeding positions were obtained. The change in the location of alloy addition feeding to the liquid steel had an effect on the process of alloy addition spread in the liquid steel bulk and on the mixing time.

Go to article

Authors and Affiliations

A. Cwudziński
B. Gajda
A. Hutny
J. Jowsa
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).

Go to article

Authors and Affiliations

Marek Cała
ORCID: ORCID
Katarzyna Cyran
ORCID: ORCID
Michał Kowalski
ORCID: ORCID
Paweł Wilkosz
Download PDF Download RIS Download Bibtex

Abstract

The article presents a numerical model of a U-ventilated longwall, taking into account detailed elements such as arch yielding support, roof supports and shearer. What distinguishes it from previous models is the mapping of adjacent goafs. This model considers the current state of knowledge regarding spatial height distribution, porosity and permeability of goafs. Airflow calculations were carried out using the selected turbulence models to select appropriate numerical methods for the model. Obtained results show possibilities of conducting extensive numerical calculations for the flow problems in the mine environment, taking into account more complex descriptions and the interpretation of the calculation results carried out with simpler models.
Go to article

Bibliography

[1] Ansys Inc, Ansys Fluent Theory Guide. Ansys Inc (2019).
[2] M. Baścik, 3D laser scanning in underground mines – practical experience. School of Underground Mining 2013. The Mineral And Energy Economy Research Institute of Polish Academy of Sciences (2013).
[3] P.Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuations. Quarterely of Applied Mathematics (1945).
[4] N .S. Dhamakar, G.A. Blasdell, A.S. Lyrintzis, An Overview of Turbulent Inflow Boundary Conditions for large Eddy Simulations. Proc of the 22 nr AIAA Computational Fluid Dynamics Conference AIAA Paper (2015).
[5] W. Dziurzyński, Prognozowanie procesu przewietrzania kopalni głębinowej w warunkach pożaru podziemnego. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków (1998).
[6] J. Janus, PhD thesis, Modelling of flow phenomena in mine drifts using the results of laser scanning. Strata Mechanics Research Institute of Polish Academy of Sciences (2018).
[7] J. Janus, The Application of laser scanning in the process of constructing a mine drift numerical model. 24th World Mining Congress PROCEEDINGS – Underground Mining, Brazilian Mining Association, Rio de Janeiro (2016).
[8] J. Janus, The application of laser scanning in the process of construction a mine drift numerical model. Transactions of the Strata Mechanics Research Institute 18, 3 (2016).
[9] J. Janus, Assessment of the possibilities of using laser scanning for numerical models constructions. Transactions of the Strata Mechanics Research Institute 17, (1-2) (2015).
[10] J. Janus, Wpływ zapory przeciwwybuchowej wodnej na pole prędkości i warunki przewietrzania wyrobiska kopalnianego. Archives of Mining Sciences, Seria: Monografia, Nr 19 (2019).
[11] J. Janus, J. Krawczyk, An Analysis of the Mixing of Air and Methane in the Stream Produced by the Mine Injector Station – Present Results of Measurements and Modeling. The Australian Mine Ventilation Conference 2013, The Australian Institute of Mining and Metallurgy (2013).
[12] J. Janus, J. Krawczyk, Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies 14, 4894 (2021). DOI: https://doi.org/10.24425/ather.2019.128295
[13] J. Janus, J. Krawczyk, The numerical simulation of a sudden inflow of methane into the end segment of a longwall with Y – type ventilation system. Archives of Mining Sciences 59, (4) (2014).
[14] A. Kidybiński, Podstawy geotechniki kopalnianej. Wydawnictwo Śląsk, Katowice (1982).
[15] J. Krawczyk, J. Janus, An example of defining boundary conditions for a flow in a mine gallery. Abstract in the XXIII Fluid Mechanics Conference Materials, Zawiercie (2018).
[16] J. Krawczyk, J. Janus, Velocity field in the area of artificially generated barrier on the mine drift floor. Przegląd Górniczy 71, (11) (2015).
[17] J. Krawczyk, Single and multiple-dimensional models of unsteady air and gas flows in underground mines. Archives of Mining Sciences, Seria: Monografia, No 2 (2007).
[18] F. Menter, Turbulence Modeling for Engineering Flows. ANSYS 2012 Inc. (2012). [19] F. Menter, Best Practice – Scale-Resolving Simulations in ANSYS CFD – Application Brief Version 2.0 (2015).
[20] J. Pokorný, L. Brumarová, P. Kučera, J. Martinka, A. Thomitzek, P. Zapletal, The effect of Air Flow Rate on Smoke Stratification in Longitudinal Tunnel Ventilation. Acta Montanistica Slovaca 24, (3) (2019).
[21] T. Ren, R. Balusu, C. Claassen, Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas. 35th APCOM Symposium (2011).
[22] P. Skotniczny, Three-Dimensional Numerical Simulation of the Mass Exchange Between Longwall Headings and Goafs, in the Presence of Methane Drainage in A U-Type Ventilated Longwall. Archives of Mining Sciences 58, (3) (2013).
[23] V. Sokoła-Szewioła, J. Wiatr, Application of laser scanning method for the elaboration of digital spatial representation of the shape of underground mining excavation. Przegląd Górniczy 8 (2013).
[24] J. Szlązak, PhD thesis, Wpływ uszczelniania chodników przyścianowych na przepływ powietrza przez zroby. AGH Kraków (1980).
[25] N. Szlązak, J. Szlązak, Wentylacja wyrobisk ścianowych w kopalniach węgla kamiennego, w warunkach zagrożenia metanowego i pożarowego. Górnictwo i Geologia (2) (2019).
[26] K. Wierzbiński, Wpływ geometrii chodnika wentylacyjnego i sposobu jego likwidacji na rozkład stężenia metanu w rejonie wylotu ze ściany przewietrzanej sposobem U w świetle obliczeń numerycznych CFD. Zeszyt Naukowy Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, No 94 (2016).
[27] M.A. Wala, S. Vytla, C.D. Taylor, G. Huang, Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Mining Engineering (2007).
[28] D.M. Worrall, E.W. Wachel, U. Ozbay, D.R. Munoz, J.W. Grubb, Computational fluid dynamic modeling of sealed longwall gob in underground coal mine – A progress report. 14th United States/North American Mine Ventilation Symposium, Calizaya & Nelson (2012).
Go to article

Authors and Affiliations

Jakub Janus
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In 2017, the Central Mining Institute (GIG), Jastrzębska Spółka Węglowa SA (JSW SA), the largest producer of coking coal in Europe, and JOY KOMATSU, the producer of mining machinery, signed a consortium. The project’s main goal was to reduce the costs of driving mine workings by reintroducing the rock bolt support. The works began in November 2019, and for the first time in the history of Polish coal mining, a Bolter Miner machine was used for the purpose. The paper presents the results of measuring the axial forces in rock bolts at the measurement base and their analysis with numerical modelling.
Go to article

Bibliography

[1] V. Artemyev, P. McInally, Improvements in Longwall Technology and Performance in Kuzbass Mines of Suek. Proceedings of the 18th Coal Operators’ Conference, Mining Engineering, University of Wollongong, 124-133 (2018).
[2] S . Banerjee, Performance evaluation of continuous miner based underground mine operation system: An OEE based approach. New Trends in Production Engineering 2, 1, 596-603 (2019). DOI: https://doi.org/10.2478/ntpe-2019-0065
[3] D . Bolstad, J. Hill, Bureau of Mines rock bolting research. Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, 313-320 (1983).
[4] F. Breinig, K. Opolony, Geplante Doppelnutzung einer Rechtankerstrecke in 1200 m Teufe im Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 159-177 (2004).
[5] T . Bush, Streckenausbau mit eisernen Ankern. Zeitschrift für das Berg – Hütten – und Salinenwesen, Berlin, 7-9 (1919).
[6] I . Canbulat, A. Wilkinson, G. Prohaska, M. Mnisi, N. Singh, An investigation into the support systems in South African collieries. Safety in Mines Research Advisory Committee, Project No SI M 020205, CSIR Division of Mining Technology, Ground Consulting (Pty) Ltd (2005).
[7] C . Cao, PhD thesis, Bolt profile configuration and load transfer capacity optimisation. School of Civil, Mining and Environmental Engineering, University of Wollongong (2012).
[8] D .R. Dolinar, S.K. Bhatt, Trends in roof bolt application. Proceedings: new technology for coal mine roof support. C. Mark, D.R. Dolinar, R.J. Tuchman, T.M. Barczak, S.P. Signer, P.F. Wopat, (Eds.) Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2000-151 (IC 9453), 43-51 (2000).
[9] R . Fletcher, Roof Bolting Equipment and Practices. Mng. Cong. J., Nov., 80-82 (1956).
[10] S .D. Flook, J.J. Leeming, Recent developments in longwall mining entry development and room and pillar systems. Gospodarka Surowcami Mineralnymi 24, 4/3, 11-23 (2008).
[11] Golder Associates UK Ltd, Initial Rockbolt Support Design. Rockbolting Trial, Budryk Colliery, Poland. Nottingham (2018).
[12] B. Hebblewhite, 25 Years of Ground Control Developments, Practices, and Issuses in Australia. 25th International Conference on Ground Control in Mining, Morgantown, WV, 111-117 (2006).
[13] H. Jalalifar, PhD thesis, A new approach in determining the load transfer mechanism in fully grouted bolts. School of Civil, Mining and Environmental Engineering, University of Wollongong (2006).
[14] H. Jurecka, Ankerausbau eine Schlüsseltechnologie für Hochleistungsstrebbetriebe in großen Teufen. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 1-17 (2001).
[15] V. Kajzar, R. Kukutsch, P. Waclawik, P. Konicek, Coal pillar deformation monitoring using terrestrial laser scanner technology in room and pillar panel – A case study from the Ostrava-Karvina Coal Field. Rock Mechanics and Rock Engineering: From the Past to the Future – Ulusay et al. (Eds.), Taylor & Francis Group, London, 951-956 (2016).
[16] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. Int. J. Coal Sci. Technol. 1 (3), 261-277 (2014). DOI: https://doi.org/10.1007/s40789-014-0043-0
[17] H. Kang, Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China. Journal of China University of Mining & Technology 45 (6), 1071-1081 (2016).
[18] K . Kovári, The Control of Ground Response – Milestones up to the 1960s. Proc. of the AITES -ITA World Tunnel Congress, Italy, Milan, 93-119 (2001).
[19] A . Kumar, R. Singh, P. Waclawik, Numerical Modelling Based Investigation of Coal Pillar Stability for Room and Pillar Development at 900 m Depth of Cover. 37TH International Conference on Ground Control in Mining, 193-203 (2018).
[20] B. Langhanki, Planungskonzeption zur Doppelnutzung einer Rechtankerstrecke im Flöz D2/C in 1.200 m Teufe. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 217-233 (2001).
[21] J. Luo, PhD thesis, A New Rock Bolt Design Criterion and Knowlwdge-based Expert System for Stratified Roof. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1999).
[22] T . Majcherczyk, A. Szaszenko, E. Sdżwiżkowa, Fundamentals of geomechanics. Wydawnictwo AGH, Kraków (2006).
[23] C .P. Mangelsdorf, Current Trends in Roof Truss Hardware. Proc. of 2nd Conference on Ground Control in Mining, edited by S.S. Peng, 108-112 (1982).
[24] C . Mark, Design of roof bolt systems. Proc.New Technology For Coal Mine Roof Support. U.S. Department of Health and Human Services, Pittsburgh, PA, 111-131 (2000).
[25] J. Modi, S. Bharti, R. Kant, Applicability of Continuous Miner in Room and Pillar Mining System: Higher Production and Productivity with Safety. International Conference on Deep Excavation, Energy Resource and Production (DEE P16), IIT Kharagpur, India (2017).
[26] A . Nierobisz, Rockbolting – history, present and future. Międzynarodowa Konferencja Szkoleniowa: Perspektywy stosowania obudowy kotwowej w polskich kopalniach węgla kamiennego, Jaworze, kwartalnik GIG Nr 2/1/2010, 184-203 (2010).
[27] A . Nierobisz, Development of Roof Bolting Use in Polish Coal Mines. Journal of Mining Science 47, No. 6, 751- 760 (2011).
[28] B. Neyman, R. Gocman, Guidelines for rockbolt support in workings. Biuletyn techniczno-informacyjny GIG nr 9 (1960).
[29] K. Opolony, H. Witthaus, A. Hucke, A. Studeny, Ergebnisse von numerischen Berechnungen und physikalischen Modellversuchen als Planungshilfe für eine Rechteckankerstrecke in Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 539-554 (2004).
[30] S. Peng, Coal Mine Ground Control. (3rd ed.), Syd Peng Publisher, Morgantown (2008).
[31] K. Podgórski, W. Podgórski, Rockbolt support of underground workings. Wydawnictwo Śląsk. Katowice (1969).
[32] L. Rabcewicz, Bolted support for tunnels. Mine and Quarry- Engineering, April, 153-159 (1955).
[33] E.U. Reuther, A. Heime, Verbesserte Bemessung von Ankerausbau in Abbau- und Basisstrecken. Kommission der Europäischen Gemeinschaften, technische Forschung Kohle, Forschungsvertrag Nr. 7220-AB/120, Luxemburg (1990).
[34] A. Sahebi, J. Hossein, M. Ebrahimi, Stability analysis and optimum support design of a roadway in a faulted zone during longwall face retreat – case study: Tabas Coal Mine. N. Aziz (Eds.), 10th Underground Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 88-96 (2010).
[35] R. Schach, K. Garshol, A.M. Heltzen, Rock bolting: a practical handbook. Pergamon Press (1979).
[36] A.J.S. Spearing, G. Bylapudi, K. Mondal, A.W. Bhagwat, Rock anchor corrosion potential determination in US underground coal mines. The Southern African Institute of Mining and Metallurgy 6th South African Rock Engineering Symposium SARES (2014).
[37] A.J.S. Spearing, B. Greer, M. Reilly, Improving rockbolt installations in US coal mines. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 111, 555-563 (2011).
[38] S. Tadolini, R. Mazzoni, Understanding roof bolt selection and design still remains priceless. 25th International Conference on Ground Control, July 2006. Morgantown, WV, USA , 382-389 (2006).
[39] S . Taghipoor, Application of numerical modelling to study the efficiency of roof bolting pattern in east 1 main roadway of Tabas coal mine. 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, 2-5 (2008).
[40] P. Waclawik, J. Ptacek, P. Konicek, R. Kukutsch, J. Nemcik, Stress-state monitoring of coal pillars during room and pillar extraction. Journal of Sustainable Mining 15, 49-56 (2016). DOI: https://doi.org/10.46873/2300-3960.1207
[41] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Engineering 191, 575-582 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.220
[42] W. Weigel, Channel Iron for Roof Control. Engineering and Mining Journal, Vol. 144, May, 70-72 (1943).
[43] J. Arthur, Ground control in coal mines in Great Britain. Coal 2006: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 10-19 (2006).
Go to article

Authors and Affiliations

Wojciech Masny
1
ORCID: ORCID
Łukasz Nita
2
ORCID: ORCID
Jerzy Ficek
3

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, KWK „Budryk”, Poland
  3. „Geofic“ Scientific and Technical Office, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tremors occur randomly in terms of time, energy as well as the location of their focus. The present state of knowledge and technology does not allow for the precise prediction of these values. Therefore, it is extremely important to correctly select a powered roof support for specific geological and mining conditions, especially in the case of areas where dynamic phenomena are often registered. This article presents information on rock burst hazard associated with the occurrence of rock mass tremors and their influence on a powered roof support. Furthermore, protection methods of a powered roof support against the negative effects of dynamic phenomena are discussed. As a result of an analysis the methodology, to determine the impact of dynamic phenomena on the powered roof support in given geological and mining conditions is presented.

Go to article

Authors and Affiliations

Wojciech Masny
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Various types of passive sonar systems are used to detect submarines. These activities are complex and demanding. Therefore, computer simulations are most often used at the design stage of these systems. For this reason, it is also necessary to simulate the acoustic ambient noise of the sea. The article proposes a new numerical model of surface and quasi-spherical sea noise and presents its statistical parameters. The results of the application of the developed noise model to analyse the received signals of the DIFAR sonobuoy are also presented.
Go to article

Bibliography

1. Barclay D.R., Buckingham M.J. (2014), On the spatial properties of ambient noise in the Tonga Trench, including effects of bathymetric shadowing, The Journal of the Acoustical Society of America, 136(5): 2497–2511, doi: 10.1121/1.4896742.
2. Buckingham M.J. (2012), Cross-correlation in bandlimited ocean ambient noise fields, The Journal of the Acoustical Society of America, 131(4): 2643–2657, doi: 10.1121/1.3688506.
3. Burdick W.S. (1984), Underwater Acoustic System Analysis, Prentice-Hall, Englewood Cliffs, NJ.
4. Cohen J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Publishers.
5. Crocker M.J. (1998), Handbook of Acoustics, John Wiley & Sons.
6. Cron B.F., Sherman C.H. (1962), Spatial-correlation functions for various noise models, The Journal of the Acoustical Society of America, 34(11): 1732–1736, doi: 10.1121/1.1909110.
7. Cron B.F., Sherman C.H. (1965), Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am., 34: 1732–1736 (1962)], The Journal of the Acoustical Society of America, 38(4): 885, doi: 10.1121/1.1909826.
8. Franks L.E. (1981), Signal Theory. Revised Edition, Dowden & Culver, Inc.: Stroudsburg, PA.
9. Grelowska G., Kozaczka E., Kozaczka S., Szymczak W. (2013), Underwater noise generated by small ships in the shallow sea, Archives of Acoustics, 38(3): 351–356, doi: 10.2478/aoa-2013-0041.
10. Jagodzinski Z. (1961), Radionavigation Systems [in Polish], Wydawnictwo MON, Warszawa.
11. Klusek Z., Lisimenka A. (2004), Characteristics of underwater noise generated by single breaking wave, Hydroacoustics, 7: 107–114.
12. Klusek Z., Lisimenka A. (2016), Seasonal and diel variability of the underwater noise in the Baltic Sea, The Journal of the Acoustical Society of America, 139(4): 1537–1547, doi: 10.1121/1.4944875.
13. Kochanska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel, The Journal of the Acoustical Society of America, 143(2): EL116–EL120, doi: 10.1121/1.5023834.
14. Kozaczka E., Grelowska G. (2011), Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119(6A): 1009–1012, doi: 10.12693/APhysPolA.119.1009.
15. Lyons R.G. (2004), Understanding Digital Signal Processing, 2nd ed., Prentice Hall, Inc. 16. Mallet A.L. (1975), Underwater Direction Signal Processing System, US Patent No 3,870,989.
17. Ren C., Huang Y. (2020), A spatial correlation model for broadband surface noise, The Journal of the Acoustical Society of America, 147(2): EL99–EL105, doi: 10.1121/10.0000710.
18. Rudnicki M., Marszal J., Salamon R. (2020), Impact of spatial noise correlation on bearing accuracy in DIFAR systems, Archives of Acoustics, 45(4): 709–720, doi: 10.24425/aoa.2020.135277.
19. Salamon R. (2006), Sonar systems [in Polish], Gdanskie Towarzystwo Naukowe, Gdansk, Poland.
20. Schmidt J.H., Schmidt A., Kochanska I. (2018), Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System, [In:] Proceedings of 2018 Joint Conference – Acoustics, Ustka, Poland, 2018, IEEE Xplore Digital Library, pp. 280– 283, doi: 10.1109/acoustics.2018.8502439.
21. Urick R.J. (1983), Principles of Underwater Sound, 3rd ed., Peninsula Pub.
22. Urick R.J. (1986), Ambient Noise in the Sea, 2nd ed., Peninsula Pub.
Go to article

Authors and Affiliations

Mariusz Rudnicki
1
Roman Salamon
1
Jacek Marszal
1

  1. Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Sonar Systems, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

2-phase composites are often used for high demanding parts that can undergo impact loads. However, most of the papers on dynamic loading concerns layered composites. In our opinion, the impact loads are not considered thoroughly enough. Good examples of 2-phase composites are: (1) a WC/Co cermet or (2) a monolithic ceramic Al2O3/ZrO2. The WC/Co cermet is often modelled as having ductile elasto-plastic Co matrix and ideally elastic WC grains. It is because of very high crushing resistivity of the WC.

In this paper, we present an extension to earlier elaborated models ([44]) with the assumption of ideal elasticity of the grains. The new and general numerical model for high-velocity impact of the 2-phase composites is proposed. The idea of this novelty relies on the introduction of crushability of grains in the composite and thermo-mechanical coupling. The model allows for description of the dynamic response both composite polycrystals made of: (1) 2 different purely elastic phases (e.g. Al2O3/ZrO2) or (2) one elastic phase and the second one plastic (e.g. cermet WC/Co), or (3) 2 elasto-plastic phases with different material properties and damage processes. In particular, the analysis was limited to the cases (2) and (3), i.e. we investigated the WC/Co polycrystal that impacted a rigid wall with the initial velocity equal to 50 m/s.

Go to article

Authors and Affiliations

E. Postek
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

Products of complex geometry, aerodynamic shape and high quality surface finishes are among the most difficult to produce by using stamping methods. When additionally materials with special properties are intended, the task of determining their technological character becomes difficult to solve without the use of physical and numerical methods of process modeling. The paper presents the results of modeling the process of producing a single tube of the jet engine tubular diffuser subassembly. This is a product representative of such a complex geometry one. The charge material for this element requires resistance to operating conditions at elevated temperature and high durability. Therefore, an Inconel type nickel superalloy was proposed for the charge material. In the solution of designing the method of producing a single diffuser tube task, the capabilities of the AutoGrid automatic strain analyzer and the FEM simulation software Eta / Dynaform 5.9 were combined. Numerical simulations of different variants of the manufacturing process of the diffuser tube were made using the Eta / Dynaform 5.9 software. The results of forming simulations became the basis for the alternative technological cycle design of this drawpiece.

Go to article

Authors and Affiliations

M. Hyrcza-Michalska

This page uses 'cookies'. Learn more