Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the main issues of design process of HVAC systems and ventilation ducts in particular is correct modelling of coupling of the flow field and acoustic field of the air flowing in such systems. Such a coupling can be modelled in many ways, one of them is using linearised Euler equations (LEE). In this paper, the method of solving these equations using finite element method and open source tools is decribed. Equations were transformed into functional and solved using Python language and FEniCS software. The non-reflective boundary condition called buffer layer was also implemented into equations, which allowed modelling of unbounded domains. The issue, influence of flow on wave propagation, could be adressed using LEE equations, as they take non-uniform mean flow into account. The developed tool was verified and results of simulations were compared with analytical solutions, both in one- and two-dimensional cases. The obtained numerical results are very consistent with analytical ones. Furthermore, this paper describes the use of the developed tool for analysing a more complex model. Acoustic wave propagation for the backward-facing step in the presence of flow calculated using Navier-Stokes equations was studied.

Go to article

Authors and Affiliations

Paweł Łojek
Ireneusz Czajka
Andrzej Gołaś
Download PDF Download RIS Download Bibtex

Abstract

A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.

Go to article

Authors and Affiliations

Ruixian Ma
Zhansheng Liu
Con J. Dooloan
Danielle J. Moreau
Michał Czarnecki

This page uses 'cookies'. Learn more