Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In 2011, over 520 thousand persons worked in hazardous conditions (according to the GUS). Among hazardous factors related to working environment noise was found to be the most common one, threatening 199,6 thousand people (52.9% threats-per-persons related to working environment). The prevalence of workplace noise and increasing awareness of effects of its impact on the human body causes increase of the demand for knowledge of the methods of noise reduction. Due to the lack of knowledge concerning the proper use of hearing protectors, effective noise exposure in the real world may be about a dozen dB higher than the declared assumed protection value. For this reason, in Central Institute for Labour Protection - NRI “The interactive system for learning the correct use of hearing protectors” has been developed. The system includes a multimedia guide on hearing protectors supplemented by video tutorials, training materials with training hearing protectors, and software for evaluation of the activities of the trainee.
Go to article

Authors and Affiliations

Paweł Górski
Download PDF Download RIS Download Bibtex

Abstract

Application of active noise reduction (ANR) systems in hearing protectors requires the use of control algorithms to ensure stability of the ANR system and at the same time highly effective active noise reduction. A control algorithm based on NOTCH filters is an example of solutions that meet these criteria. Their disadvantage is operation over a narrow frequency band and a need for prior determination of frequencies to be reduced. This paper presents a solution of the ANR system for hearing protectors which is controlled with the use of modified NOTCH filters with parameters determined by a genetic algorithm. Application of a genetic algorithm allows to change the NOTCH filter reference signal frequency, and thus, adapt the filter to the reduced signal frequency.
Go to article

Authors and Affiliations

Paweł Górski
Leszek Morzyński
Download PDF Download RIS Download Bibtex

Abstract

Additional sound sources are used as actuators in the vast majority of active noise reduction systems. One of the possible opportunities to extend the field of applications of active noise reduction systems is using active structures of variable sound insulation. The paper presents an analysis of ways of reducing noise with a structure of variable sound insulation consisting of a metal plate, active elements (Macro Fiber Composite), and a control system. The paper presents results of acoustic radiation simulations and measurements of sound intensity generated by the structure under the influence of stimulation by an acoustic wave. Simulations of mechanical vibrations and acoustic radiation for the plate were performed with the finite element method and ANSYS software. Simulation results made it possible to select locations for gluing the active elements and sensors. Analyses of the sound pressure level in the space to which the plate is radiating made it possible to determine dominant frequencies in the characteristics and, as a result, indicate vibration modes that can be reduced. Sound intensity measurements were performed with a three-way probe of USP mini Microflown. Results of simulations and measurements show that it is possible to achieve an improvement of the insulating power of a metal plate by approx. 10 dB.

Go to article

Authors and Affiliations

Paweł Górski
Michał Kozupa
Download PDF Download RIS Download Bibtex

Abstract

Noise pollution is a major problem nowadays. In urban context, road traffic is the main source of noise pollution. People directly exposed to road traffic noise suffer from moderate to severe annoyance, headache, stress, feeling of exhaustion, and reduced work performance efficiency. As the sources and severity of noise pollution continue to grow, new approaches are needed to reduce the exposure. In this research, noise abatement has been investigated using a computer simulation model (SoundPLAN essential 4.0). Noise maps were developed using SoundPLAN essential 4.0 software. Noise maps are very beneficial to identify the impact of noise pollution. Data required for mapping are noise data (LAeq), road inventory data, geometric features of mapping area, category wise traffic counts, category wise vehicle speed, meteorological data such as wind velocity, humidity, temperature, air pressure. LAeq observed on all locations of the Central zone of Surat city was greater than the prescribed central pollution control board (CPCB) limits during day time and night time. This paper is focused on using acoustic software for the simulation and calculation methods of controlling the traffic noise. According to the characteristics of traffic noise and the techniques of noise reduction, road traffic noise maps were developed using SoundPLAN essential 4.0 software to predict the scope of road traffic noise. On this basis, four reasonable noise control schemes were used to control noise, and the feasibility and application effect of these control schemes can be verified by using the method of simulation modelling. The simulation results show that LAeq is reduced by up to 5 dB(A). The excess noise can be efficiently reduced by using the corresponding noise reduction methods.
Go to article

Bibliography

1. Arana M.R.S., Nagore I., Pérez D. (2013), Main results of strategic noise maps and action plans in Navarre (Spain), Environmental Monitoring and Assessment, 185(6): 4951–4957, doi: 10.1007/s10661-012-2916-2.
2. Central Pollution Control Board (2000), Noise pollution regulation in India.
3. Cerdá S., Lacatis R., Gimenez A. (2013), On absorption and scattering coefficient effects in modellisation software, Acoustics Australia, 41(2): 151–155.
4. Golmohammadi R., Abbaspour M., Nassiri P., Mahjub H. (2007), Road traffic noise model, Journal of Research in Health Sciences, 7(1): 13–7, http://www.ncbi.nlm.nih.gov/pubmed/23343866.
5. Jhanwar D. (2016), Noise pollution: a review, Journal of Environment Pollution and Human Health, 4(3): 72– 77, doi: 10.12691/jephh-4-3-3.
6. Lavanya C., Dhankar R., Chhikara S. (2014), Noise Pollution: an Overview, International Journal of Current Research, 6(5): 6536–6543.
7. Manojkumar N., Basha K., Srimuruganandam B. (2019), Assessment, prediction and mapping of noise levels in Vellore City, India, Noise Mapping, 6(1): 38– 51, doi: 10.1515/noise-2019-0004
8. Oguntunde P.E., Okagbue H.I., Oguntunde O.A., Odetunmibi O.O. (2019), Public health in Ota Metropolis, Access Macedonian Journal of Medical Sciences, 7(8): 1391, doi: 10.3889/oamjms.2019.234
9. Paszkowski W., Sobiech M. (2019), The modeling of the acoustic condition of urban environment using noise annoyance assessment, Environmental Modeling and Assessment, 24(3): 319–330, doi: 10.1007/s10666-018-9643-1.
10. Prajapati P., Devani A.N. (2017), Review paper on noise reduction using different techniques, International Research Journal of Engineering and Technology (IRJET), 4(3): 522–524, https://irjet.net/archives/V4/i3/IRJET-V4I3145.pdf.
11. Sonaviya D.R., Tandel B.N. (2019a), 2-D noise maps for tier-2 city urban Indian roads, Noise Mapping, 6(1): 1–7, doi: 10.1515/noise-2019-0001.
12. Sonaviya D.R., Tandel B.N. (2019b), A review on GIS based approach for road traffic noise mapping, Indian Journal of Science and Technology, 12(14): 1–6, doi: 10.17485/ijst/2019/v12i14/132481.
13. Sonaviya D.R., Tandel B.N. (2020), Integrated road traffic noise mapping in urban Indian context, Noise Mapping, 7(1): 99–113, doi: 10.1515/noise-2020-0009.
14. Tandel B.N., Macwan J.E.M. (2017), Road traffic noise exposure and hearing impairment among traffic policemen in Surat, Western India, Journal of The Institution of Engineers (India): Series A, 98(1–2): 101–105, doi: 10.1007/s40030-017-0210-6.
15. Wolniewicz K., Zagubien A. (2015), Verifying traffic noise analysis calculation models, Polish Journal of Environmental Studies, 24(6): 2767–2772, doi: 10.15244/pjoes/58962.
Go to article

Authors and Affiliations

Dipeshkumar Ratilal Sonaviya
1
Bhaven N. Tandel
1

  1. Civil Engineering Department, SVNIT Surat, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of the localization of main noise sources in the industrial plant. Identification of main noise sources was made with an acoustic camera using Beamforming Method. Parallel to the measurements by means of the acoustic camera, sound level measurements on the main noise sources have been performed. Based on the calculations, prediction regarding the noise emission at residential buildings located near to the plant has been determined. Acoustic noise maps have been performed with LEQ Professional software, which includes the 3D geometry of the buildings inside the plant. It has been established that, after introduction of noise reduction measures in the plant, the noise levels at the observation points in the residential area meets the limit values.

Go to article

Authors and Affiliations

Wiesław Fiebig
Damian Dąbrowski
Download PDF Download RIS Download Bibtex

Abstract

The paper shows the new method for noise reduction in external gear pumps based on the analysis of the pressure in inter teeth volumes. The simulation model and measurement results of pressure changes in the inter teeth volume has been presented. Based on simulation results an additional volume has been obtained, which is connected to the inter teeth volume (decompression filter volume). Due this additional volume the build down processes in the pump are longer and the pressure overdue in the inter teeth volumes are smaller. This leads to the reduction of the dynamical excitation forces inside the pump and noise, especially in the higher frequency rangeI.

Go to article

Authors and Affiliations

Wiesław Fiebig
Download PDF Download RIS Download Bibtex

Abstract

Optimization of encoding process in video compression is an important research problem, especially in the case of modern, sophisticated compression technologies. In this paper, we consider HEVC, for which a novel method for selection of the encoding modes is proposed. By the encoding modes we mean e.g. coding block structure, prediction types and motion vectors. The proposed selection is done basing on noise-reduced version of the input sequence, while the information about the video itself, e.g. transform coefficients, is coded basing on the unaltered input. The proposed method involves encoding of two versions of the input sequence. Further, we show realization proving that the complexity is only negligibly higher than complexity of a single encoding. The proposal has been implemented in HEVC reference software from MPEG and tested experimentally. The results show that the proposal provides up to 1.5% bitrate reduction while preserving the same quality of a decoded video.
Go to article

Authors and Affiliations

Olgierd Stankiewicz
Krzysztof Wegner
Damian Karwowski
Jakub Stankowski
Krzysztof Klimaszewski
Tomasz Grajek
Download PDF Download RIS Download Bibtex

Abstract

The core goal of this paper is to put forward a feasible scheme of noise reduction for a target forklift on the basis of solving the problem of vibration and acoustic radiation from complex structures in infinite domain. Based on the previous report and vibration acceleration tests, the acoustic virtual wind tunnel model of forklift power compartment was established using finite element method and boundary element method, in which the perfectly matched layer was first applied to simulate the attenuation propagation of sound waves in air. In addition, according to the distribution characteristics of sound pressure field with different frequencies, the acoustic energy mainly radiated through the bottom and right side, and concentrated in the low frequency. Consequently, the acoustic packaging design for the whole forklift power compartment was presented, and a satisfying noise reduction effect was achieved.
Go to article

Bibliography

1. Bermudez A., Hervella-Nieto L., Prieto A., Rodriguez R. (2014), An optimal perfectly matched layer with unbounded absorbing function for timeharmonic acoustic scattering problems, Journal of Computational Physics, 223(2): 469–488, doi: 10.1016/j.jcp.2006.09.018
2. Bi C.X., Zhang Y., Zhang X.Z., Zhang Y.B. (2018), Stability analysis of inverse time domain boundary element method for near-field acoustic holography, The Journal of the Acoustical Society of America, 143(3): 1308–1317, doi: 10.1121/1.5026024.
3. Cai H,S., Li X.X., Zhang W.B. (2010), Analysis and experimental study on sound absorption and noise reduction performance of some composite materials, Noise and Vibration Control, 4: 54–57, doi: 10.3969/j.issn.1006-1355.2010.04.015.
4. Chen L.H., Schweikert D.G. (1963), Sound radiation from an arbitrary body, The Journal of the Acoustical Society of America, 35(10): 1626–1632, doi: 10.1121/1.1918770.
5. Chen L.L., Liu L.C., Zhao W.C., Chen H.B. (2016), 2D acoustic design sensitivity analysis based on adjoint variable method using different types of boundary elements, Acoustics Australia, 44(2): 343–357, doi: 10.1007/s40857-016-0065-4.
6. Chen L.L., Zhao W.C., Liu C., Chen H.B. (2017), 2D structural acoustic analysis using the FEM/FMBEM with Different Coupled Element Types, Archives of Acoustics, 42(1): 37–48, doi: 10.1515/aoa-2017-0005.
7. Chen L.L., Zhao W.C., Liu C., Chen H.B., Marburg S. (2019), Isogeometric Fast Multipole Boundary Element Method based on Burton-Miller formulation for 3D acoustic problems, Archives of Acoustics, 44(3): 475–492, doi: 10.24425/aoa.2019.129263.
8. Dammak K., Koubaa S., EI Hami A., Walha L., Haddar M. (2019), Numerical modelling of vibroacoustic problem in presence of uncertainty: Application to a vehicle cabin, Applied Acoustics, 144: 113– 123, doi: 10.1016/j.apacoust.2017.06.001.
9. Dogan H., Eisenmenger C., Ochmann M. (2018), A LBIE-RBF solution to the convected wave equation for flow acoustics, Engineering Analysis with Boundary Elements, 92: 196–206, doi: 10.1016/j.enganabound.2017.11.016.
10. Duru K., Kreiss G. (2014), Efficient and stable perfectly matched layer for CEM, Applied Numerical Mathematics, 76: 34–47, doi: 10.1016/j.apnum.2013.09.005.
11. Gao K., Fu S.B., Chung E.T. (2018), A high-order multiscale finite-element method for time-domain acoustic-wave modeling, Journal of Computational Physics, 360: 120–136, doi: 10.1016/j.jcp.2018.01.032.
12. Gao R.X., Zhang Y.H., Kennedy D. (2019), Topology optimization of sound absorbing layer for the midfrequency vibration of vibro-acoustic systems, Structural and Multidisciplinary Optimization, 59(5): 1733– 1746, doi: 10.1007/s00158-018-2156-3.
13. Hashimoto N. (2001), Measurement of sound radiation efficiency by the discrete calculation method, Applied Acoustics, 62(4): 429–446, doi: 10.1016/S0003- 682X(00)00025-6.
14. Jang H.W., Ih J.G. (2013), On the instability of time-domain acoustic boundary element method due to the static mode in interior problems, Journal of Sound and Vibration, 332(24): 6463–6471, doi: 10.1016/j.jsv.2013.07.018.
15. Kolber K., Snakowska A., Kozupa M. (2014), The effect of plate discretizationon accuracy of the sound radiation efficiency measurements, Archives of Acoustics, 39(4): 511–518, doi: 10.2478/aoa-2014-0055.
16. Komatisch D., Tromp J. (2003), A perfectly matched layer absorbing boundary condition for the secondorder seismic wave equation, Geophysical Journal International, 154(1):146–153, doi: 10.1046/j.1365- 246X.2003.01950.x.
17. Kozien M.S. (2005), Hybrid method of evaluation of sounds radiated by vibrating surface elements, Journal of Theoretical and Applied Mechanics, 43(1): 119–133.
18. Kozien M.S. (2009), Acoustic intensity vector generated by vibrating set of small areas with random amplitudes, Journal of Theoretical and Applied Mechanics, 47(2): 411–420.
19. Liu X.J., Wu H.J., Jiang W.K. (2017), A boundary element method based on the hierarchical matrices and multipole expansion theory for acoustic problems, International Journal of Computational Methods, 15: 1850009, doi: 10.1142/S0219876218500093.
20. Lock A., Holloway D. (2016), Boundary element modelling of a novel simple enhanced bandwidth schroeder diffuser offering comparable performance to a fractal design, Acoustics Australia, 44(1): 137–147, doi: 10.1007/s40857-016-0049-4.
21. Loeffler C.F., Mansur W.J., Barcelos H.D., Bulcao A. (2015), Solving Helmholtz problems with boundary element method using direct radial basis function interpolation, Engineering Analysis with Boundary Elements, 61: 218–225, doi: 10.1016/j.enganabound.2015.07.013.
22. Mott P.H., Michael R.C., Corsaro R.D. (2002), Acoustic and dynamic mechanical properties of a polyurethane rubber, The Journal of the Acoustical Society of America, 111(4): 1782–1790, doi: 10.1121/1.1459465.
23. Qu W.Z., Fan C.M., Gu Y., Wang F.J. (2019), Analysis of three-dimensional interior acoustic fields by using the localized method of fundamental solutions, Applied Mathematical Modelling, 76: 122–132, doi: 10.1016/j.apm.2019.06.014.
24. Tian W.Y., Yao L.Y., Li L. (2017), A Coupled Smoothed Finite Element-Boundary Element Method for structural-acoustic analysis of shell, Archives of Acoustics, 42(1): 49–59, doi: 10.1515/aoa-2017-0006.
25. Yang H.B. (2013), Low-frequency acoustic absorption mechanism of a viscoelastic layer with resonant cylindrical scatterers, Acta Physica Sinca, 62(15): 223–229, doi: 10.7498/aps.62.154301.
26. Zhang E.L., Hou L., Yang W.P. (2015), Noise source identification and experimental research of engine compartment of a Forklift based on fast independent component analysis and Scan & Paint, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Vol. 13: Vibration, Acoustics and Wave Propagation, Houston, Texas, USA, November 13–19, 2015, doi: 10.1115/IMECE2015-51380.
27. Zhang E.L., Zhang Q.M., Xiao J.J., Hou L., Guo T. (2018), Acoustic comfort evaluation modeling and improvement test of a forklift based on rank score comparison and multiple linear regression, Applied Acoustics, 135: 29–36, doi: 10.1016/j.apacoust.2018.01.026.
28. Zhang E.L., Zhuo J.M., Hou L., Fu C.H., Guo T. (2021), Comprehensive annoyance modeling of forklift sound quality based on rank score comparison and multi-fuzzy analytic hierarchy process, Applied Acoustics, 173: 107705, doi: 10.1016/j.apacoust.2020.107705
Go to article

Authors and Affiliations

Enlai Zhang
1 2
Zhiqi Liu
2
Jingjing Zhang
3
Jiahe Lin
4

  1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, China
  2. Chengyi University College, Jimei University, Xiamen, China
  3. College of Applied Science and Technology, Hainan University, Danzhou, China
  4. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a frame structure based on the locally resonant (LR) mechanism of phononic crystals (PCs) is designed on account of the wide application of frame structures in high-rise buildings, and the band structures, displacement fields of eigenmodes, and transmission power spectrums of corresponding finite structure are calculated by finite element (FE) method. Numerical results and further analysis demonstrate that a full band gap with low starting frequency can be opened by the frame structure formed by periodically combining soft and hard materials, and the starting frequency can be further lowered with the adjustment of corresponding geometric parameters, which provides a theoretical basis for the studies on vibration insulation and noise reduction of high-rise buildings.

Go to article

Authors and Affiliations

Yukun Wang
Denghui Qian
Jinghong Wu
Feiyang He
Download PDF Download RIS Download Bibtex

Abstract

The almost unlimited possibilities of modern computational tools create the temptation to study phenomena related to the operation of engineering objects exclusively using complex numerical simulations. However, the fascination with multi-parametric complex computational models, whose solutions are obtained using iterative techniques, may result in qualitative discrepancies between reality and virtual simulations. The need to verify on real objects the conclusions obtained from numerical calculations is therefore indisputable. The enormous cost and uniqueness of large-scale test stands significantly limit the possibility of conducting tests under real conditions. The solution may be an experiment focused on testing features relevant to the given task, while minimising the dimensions of the objects under consideration. Such conditions led to the concept of conducting a series of field experiments to verify the effectiveness of prototype track components, which were developed using numerical simulations to reduce the noise caused by passing trains. The main aim of this study is to examine the acoustic efficiency of prototype porous concrete sound absorbing panels, in relation to the ballasted and ballastless track structures. Presented results of the proposed unconventional experiments carried out on an improvised test stand using the recorded acoustic signals confirm the effectiveness of the developed vibroacoustic isolators.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Grzegorz Klekot
2
ORCID: ORCID
Piotr Książka
3
Artur Zbiciak
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Patrycja Chacińska
3
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Faculty of Civil Engineering, Warsaw University of Technology
  2. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology
  3. National Research Institute, Department of Environmental Acoustics, Institute of Environmental Protection Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Problems associated with designing silencers are presented. Results of direct tests of silencers for cooperation with systems of axial fans, as well as results of numerical tests of a two stage acoustic silencer, are given. The numerical tests enabled determining the distribution of acoustic field inside the silencer and in the surrounding area. In those tests A sound insertion losses for different variants of installation inside the silencer, as well as for two different types of absorbing material used to fill the silencer walls, were determined. Impact of design features of silencers on effectiveness of noise reduction is described. Also, a technical sketch of a universal silencer with significant noise reduction (DipS = 39:1 dB) which can be successfully used in many ventilation systems is presented
Go to article

Authors and Affiliations

Marek Pierchała

This page uses 'cookies'. Learn more