Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 73
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Due to the increasing problem resulting from environmental pollution with heavy metals, great emphasis is placed on the development of removal methods of these pollutants from the environment. This study presents a literature review on the methods for the removal of nickel ions from aqueous solutions such as sorption, especially using low-cost sorbents which are very popular in 21���� century, electrochemical processes and membrane techniques. It is often impossible to use a single technique for efficient removal of heavy metals from wastewater as the process depends on many factors, such as wastewater composition, pH, temperature and many others. The aim of this review is to present some selected removal techniques of nickel(II) from wastewater from the point of view of their efficiency and applicability.
Go to article

Authors and Affiliations

Izabela Kruszelnicka
1
ORCID: ORCID
Dobrochna Ginter-Kramarczyk
1
ORCID: ORCID
Wojciech Góra
1
ORCID: ORCID
Katarzyna Staszak
2
ORCID: ORCID
Marek Baraniak
3
Grzegorz Lota
3
ORCID: ORCID
Magdalena Regel-Rosocka
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Energy and Environmental Engineering, Institute of Environmental Engineering and Building Installations, Berdychowo 4, 60-965 Poznan
  2. Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan
  3. Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research of Ni/diamond composite coatings produced by electrochemical reduction method. Research was focused on composite coatings with nickel matrix and diamond as a disperse phase and for comparison purposes on nanocrystalline nickel coatings. Ni/diamond composite coatings were produced in baths with different content of nanodiamond powder. The structures of the dispersed phase and the composite coatings were analysed by using X-ray diffraction, scanning electron microscopy and light microscopy. Measurements of selected properties of the coatings were performed, including roughness, microhardness, adhesion and abrasive wear resistance. The research results indicate that the produced coatings have a compact structure and good adherence to steel substrate. Moreover, nanocrystalline Ni/diamond composite coatings exhibit greater hardness and reduced abrasive wear resistance compared to nanocrystalline nickel coatings.

Go to article

Authors and Affiliations

A. Mazurek
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research conducted in a 2-year pot experiment in an unheated plastic tunnel was to determine suitability of Miscanthus × giganteus for phytoextraction of nickel from soil as well as to assess tolerance of this species on increasing concentrations of this metal in soil. Pots were filled with mineral soil (sand) and a mixture of soil with high-moor peat and three levels of nickel were introduced, i.e. 75 mg dm-3, 150 mg dm-3 and 600 mg dm-3 and the control combinations used substrates without the addition of nickel. Nickel was introduced only in the first year of the experiment in the form of nickel sulfate (NiSO4 · 6H2O). Miscanthus × giganteus accumulated a considerable amount of nickel in biomass. Miscanthus × giganteus growing in contaminated mineral soil turned out to be a species tolerant to high nickel concentrations

Go to article

Authors and Affiliations

Maciej Bosiacki
Download PDF Download RIS Download Bibtex

Abstract

In the domain of the equipment and apparatus construction, a permanent preoccupation worldwide is ensuring technical performances and high fiability in exploitation. The users’ requirement growth in this field led to producing materials with high characteristics such as iron-nickel alloys having a high nickel content with special magnetic, thermal, or elastic properties. The theoretical and experimental researches had the aim of obtaining cold rolled strip, thin (2.6 mm) and narrow (86 mm) from iron-nickel alloys with 41% Ni (low content of C: 0.02-0.04%; Fe: 58%; other elements: Mn, Si, Cu, Cr, Al: under 1%). Our own experiments aimed to establish an optimal cold rolling technology of hot rolled strips of iron-nickel alloys, in order to obtain cold rolled strips with superior mechanical and technological characteristics, strip profile according to current standards, including a finished product characterization.
Go to article

Authors and Affiliations

M. Bordei
1
ORCID: ORCID
B. Tudor
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Faculty of Engineering, Materials and Environmental Quality Research Center (CMM), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

Nickel damages the male reproductive system. We investigated the beneficial effects of silibinin which has metal-chelating and antioxidant properties over nickel toxicity. Both antioxidative effects in testes and overall effects related to sperm motility, membrane and acrosome integrity of orally administered Silibinin were evaluated against the harmful effects of 30 day of intraperitoneal nickel sulfate (5 mg/kg/day) administration in rats. Male rats were randomized into control (Group1; n=6) and three experimental groups (n=6, each): Group2 Nickel sulfate (5 mg/kg/day), Group3 Silibinin (150 mg/kg/day), and Group 4 Nickel sulfate (5 mg/kg/day) + Silibinin (150 mg/kg/day). We found higher sperm motility, viable sperm and total sperm count in Groups 3 and 4 than the Group 2 treatment groups and the percentage of abnormal spermatozoa was similar in both groups (Groups 2 and 4). Increased apoptosis, activation of caspase3, 8, 9 and TUNEL were detected in Group 2. However, activation of caspase3, 8, 9 and TUNEL was reduced in Group 4. The protective effects of silibinin were demonstrated on histopathologic findings and some sperm parameters (sperm motility percentage, viable spermatozoa, sperm count, and abnormal spermatozoa percentage) in rats exposed to nickel.
Go to article

Authors and Affiliations

F. Temamogullari
1
A. Atessahin
2
C. Cebi Sen
3
N. Yumusak
4
M.S. Dogru
5

  1. Department of Pharmacology and Toxicology, University of Harran, Faculty of Veterinary Medicine, 63200 Şanlıurfa, Turkey
  2. Department of Pharmacology and Toxicology, University of Fırat, Faculty of Veterinary Medicine, 23119 Elazığ, Turkey
  3. Department of Reproduction and Artificial Insemination, University of Harran, Faculty of Veterinary Medicine, 63200 Şanlıurfa, Turkey
  4. Department of Pathology, University of Harran, Faculty of Veterinary Medicine, 63200 Şanlıurfa, Turkey
  5. Department of Pharmacology and Toxicology, University of Aksaray, Faculty of Veterinary Medicine, 6800 Aksaray, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the adaptation of the modified pulse method for investigating temperature characteristics of thermal diffusivity in the vicinity of the second-order phase transition points. The principle of the adaptation consists in the modified in relation to the original method, development of the characteristics of temperature changes between boundary surfaces of a flat-parallel specimen after the laser shot onto its front surface. The application of this adaptation was illustrated with investigation into thermal diffusivity of nickel (99.9% wt) in the temperature range of 20-380◦C. In all cases the measurement error was less than 3%, and the averaging interval for the measured values of thermal diffusivity was not greater than 1.2 K.

Go to article

Authors and Affiliations

Janusz Terpiłowski
Robert Szczepaniak
Grzegorz Woroniak
Rafał Rudzki
Download PDF Download RIS Download Bibtex

Abstract

Serpentine soils from 16 sample points in Serbia as well as the roots and shoots of eight Brassicaceae family species: Aethionema saxatile, Alyssum montanum, Alyssum repens, Cardamine plumieri, Erysimum linariifolium, Erysimum carniolicum, Isatis tinctoria, Rorippa lippizensis, were analyzed with regard to their concentrations of P, K, Fe, Ca, Mg, Ni, Zn, Mn, Cu, Cr, Cd, and Pb. Most of the soil samples were typical of ultramafic sites with low concentrations of P, K and Ca and high concentrations of Mg, Fe, Ni and Zn. Ca/Mg ratio was <1 in most soil samples and Brassicaceae plants. Only in A. montanum, A. repens, E. linariifolium and R. lippizensis was the Ca/Mg ratio >1. The levels of P, K, Fe and Zn were high, Mn and Cu occurred in low amounts, whereas Cr, Cd, Co and Pb were only traceable. In the roots and shoots of A. montanum and A. repens the measured concentrations of Ni were 657 mg kg-1 and 676 mg kg-1 respectively, which is the first instance that such high concentrations of Ni were detected in these two species.

Go to article

Authors and Affiliations

Gordana M. Tomović
Nevena Lj. Mihailović
Ahmed F. Tumi
Boško A. Gajić
Tomica D. Mišljenović
Marjan S. Niketić
Download PDF Download RIS Download Bibtex

Abstract

Zinc plant residue is a hazardous waste which contains high quantity of nickel and other valuable metals. Process parameters such as reaction time, acid concentration, solid-liquid ratio, particle size, stirring speed and temperature for nickel extraction from this waste were optimized using factorial design. Main effects and their interactions were obtained by the analysis of variance ANOVA. Empirical regression model was obtained and used to predict nickel extraction with satisfactory results and to describe the relationship between the predicted results and the experiment results. The important parameters for maximizing nickel extraction were identifi ed to be a leaching time solid-liquid ratio and acid concentration. It was found that above 90% of nickel could be extracted in optimum conditions.
Go to article

Authors and Affiliations

Mahdi Gharabaghi
Mehdi Irannajad
Amir Reza Azadmehr
Majdi Ejtemaei
Download PDF Download RIS Download Bibtex

Abstract

Impact of surface and volume modification and double filtration during pouring the moulds on basic mechanical properties and creep resistance of nickel superalloys IN-713C and MAR-247 in conditions of accelerated creep of castings made of post-production scrap of these alloys is evaluated in this paper. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of stereological properties of material macro- and microstructure. It has been proven that in the conditions of hightemperature creep at 980°C and at stress σ = 150 MPa, creep resistance of superalloy MAR-247 is more than 10 times higher than the creep resistance of IN-713C alloy. In case of IN-713C alloy, the creep resistance negligibly depends on macrograin sizes. But, the macrograin size considerably affects the time to failure of specimens made of alloy MAR-247. Creep resistance of specimens made of coarse grain material was 20% higher than the resistance of fine grain materials.
Go to article

Authors and Affiliations

M. Cieśla
F. Binczyk
M. Mańka
Download PDF Download RIS Download Bibtex

Abstract

FeCl3 bearing etching solution is mainly used for etching of metals used in shadow masks, PCBs and so on. Due course of Invar alloy etching process the FeCl3 bearing etching solution get contaminated with Ni2+ which affect adversely the etching efficiency. Hence, FeCl3 bearing etching solution discarded after several cycle of operation causes an environmental and economic problem. To address both the issues the etching solution was purified through solvent extraction and remained Ni2+ recovered by wet chemical reduction using hydrazine. For optimum Fe3+ extraction efficiency, various extraction parameter were optimized and size and morphology of the recovered pure Ni powder was analyzed. The reported process is a simple process to purify and recover Ni from industry etching solution.

Go to article

Authors and Affiliations

Il-Jeong Park
Basudev Swain
Dae-Weon Kim
Geon-Hong Kim
Deok-Hyun Han
Hang-Chul Jung
Download PDF Download RIS Download Bibtex

Abstract

Zanieczyszczenia przemysłowe przyczyniają się z reguły do poglębicnia degradacji rolniczej przestrzeni produkcyjnej, prowadząc między innymi do nagromadzenia metali ciężkich w glebie. Do grupy metali ciężkichzaliczany jest nikiel, który w małych ilościach jest niezbędny dla wzrostu i rozwoju organizmów żywych, natomiast występujący w nadmiarze jest toksyczny. W czteroletnim doświadczeniu wazonowym badano wpływ zanieczyszczenia gleby niklem (50, I 00 i 150 mg Ni/kg gleby zastosowanego w formie NiSO,711,O) na tic zróżnicowanego wapnowania (wg 0,5; I i 1.5 Hh gleby zastosowanego w formie CaCO) na zawartość Pb i Mn w koniczynie czerwonej. Zawartość metali oznaczono metodą ICP-J\ES po wcześniejszej mineralizacji materiału roślinnego ,,na sucho" w piecu muflowym w temperaturze 450°C i rozpuszczeniu popiołu w I 0% roztworze HCL. Wyniki badań opracowano statystycznie analizą wariancji z wykorzystaniem rozkładu F-FisheraSnedecora wg programu F.R. Anal.var 4.1., a wartość NIR.,5 wyliczono wg testu Tukeya. W celu znalezienia związków między badanymi cechami w pracy przeprowadzono również analizę korelacji liniowej. Zawartość obu metali w roślinach uprawianych na glebach zanieczyszczonych niklem była większa w odniesieniu do roślin uprawianych na glebach niezanieczyszczonych, co może świadczyć o synergizmie niklu i omawianych metali. Zastosowane wapniowanie (niezależnie od ilości CaCO, wprowadzonego do gleby) powodowało istotne zmniejszenie zawartości obu metali w roślinie testowej. Przeprowadzone badania wykazały synergistyczne zależności pomiędzy niklem a ołowiem i manganem.
Go to article

Authors and Affiliations

Beata Kuziemska
Stanisław Kalembasa
Download PDF Download RIS Download Bibtex

Abstract

The profile differences of zinc, copper, and nickel contents in forest podzolic soils on South-Podlasie Lowland wen: studied. Their considerable differentiation was found. Contents and differentiation of analyzed heavy metals in studied soil horizons were determined by: parents rock and soil-forming processes (mainly podzolization) characteristic for those soils.
Go to article

Authors and Affiliations

Dorota Kalembasa
Marcin Becher
Krzysztof Pakuła
Download PDF Download RIS Download Bibtex

Abstract

In years 1998-2000 the pot experiment was carried out. The aim of this investigation was to determine the influence of brown coal, waste activated sludge, their mixtures and farmyard manure on the content of Cr and Ni in soil material and in the dry mass of Lolium multiflorum Krato variety. The pots were filled with loamy sand as soil material, brown coal which had low energetic value from Sieniawa and Konin mines. waste activated sludges were taken from mechanical-biological sewage purification plants located at Siedlce, Luków and Drosed (poultry processing plant) and mixed farmyard manure. In each year of experiment four cuts were harvested. The total content of Cr and Ni in soil materials and in dry mass of grass after dry combustion of samples was determinate by !CP-AES method on spectrometer Optima 3200 RL manufactured by Perkins-Elmer. The highest content of Cr and Ni was determinate in soil materials from objects fertilized with waste activated sludge from Siedlce. The average content of Cr in dry mass of grass reached 5.15 mg/kg and Ni 3.05 mg/kg.
Go to article

Authors and Affiliations

Stanisław Kalembasa
Barbara Symanowicz
Download PDF Download RIS Download Bibtex

Abstract

Products of complex geometry, aerodynamic shape and high quality surface finishes are among the most difficult to produce by using stamping methods. When additionally materials with special properties are intended, the task of determining their technological character becomes difficult to solve without the use of physical and numerical methods of process modeling. The paper presents the results of modeling the process of producing a single tube of the jet engine tubular diffuser subassembly. This is a product representative of such a complex geometry one. The charge material for this element requires resistance to operating conditions at elevated temperature and high durability. Therefore, an Inconel type nickel superalloy was proposed for the charge material. In the solution of designing the method of producing a single diffuser tube task, the capabilities of the AutoGrid automatic strain analyzer and the FEM simulation software Eta / Dynaform 5.9 were combined. Numerical simulations of different variants of the manufacturing process of the diffuser tube were made using the Eta / Dynaform 5.9 software. The results of forming simulations became the basis for the alternative technological cycle design of this drawpiece.

Go to article

Authors and Affiliations

M. Hyrcza-Michalska
Download PDF Download RIS Download Bibtex

Abstract


Austenitic chromium-nickel cast steel is used for the production of machine parts and components operating under corrosive conditions combined with abrasive wear. One of the most popular grades is the GX2CrNi18-9 grade, which is used in many industries, and mainly in the chemical, food and mining industries for tanks, feeders, screws and pumps.
To improve the abrasion resistance of chromium-nickel cast steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content and adding titanium, which after alloy solidification yielded the test castings with the microstructure consisting of an austenitic matrix and primary carbides evenly distributed in this matrix.
The measured hardness of the samples in both as-cast conditions and after solution heat treatment was from 300 to 330HV0.02 and was higher by about 40-70 units compared to the reference GX2CrNi18-9 cast steel, which had the hardness of 258HV0.02.
The abrasive wear resistance of the tested chromium-nickel cast steel, measured in the Miller test, increased by at least 20% (with the content of 1.3 wt% Ti). Increasing the Ti content in the samples to 5.3 and 6.9 wt% reduced the wear 2.5 times compared to the common GX2CrNi18-9 cast steel.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings –applications. Kraków: Fotobit. (in Polish).
[2] Calliari, L., Brunelli, K., Dabala, M., & Ramous, E. (2009). Measuring secondary phases in duplex stainless steel. The Journal of The Minerals, Metals & Materials Society. JOM. 61, 80-83.
[3] Chen, T.H., & Yang, J.R. (2001). Effects of solution treatment and continuous cooling on σ phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A. 313(1-2), 28-41.
[4] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[5] Jimenez, J.A., Carsi, M., Ruano, A. & Penabla, F. (2000). Characterization of a δ/γ duplex stainless steel. Journal of Materials Science. 35, 907-915.
[6] Voronenko, B.I. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39, 428-437.
[7] Pohl, M., Storz, O. & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 58(1), 65-71.
[8] Gunn, R. N. (1999). Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing.
[9] Patil, A., Tambrallimath, V. & Hegde, A. (2014). Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites. International Journal of Engineering Research & Technology. 3(12), 14-17.
[10] PN-EN 10088-1/2005(U).
[11] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[12] Głownia, J., Kalandyk, B. & Camargo, M. (2002). Wear resistance of high Cr-Ni alloys in iron ore slurry conditions. Inżynieria Materiałowa (Material Engineering). 5, 694-697.
[13] Tęcza, G. (2019). Selected wear resistant cast steels with Ti, Nb, V, W and Mo carbides. Katowice-Gliwice: Wydawnictwo Komisja Odlewnictwa PAN. (in Polish).
[14] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[15] Charchalis, A., Dyl, T., Rydz, D., Stradomski, G. (2018). The effect of burnishing process on the change of the duplex cast steel surface properties. Inżynieria Materiałowa. 6(226), 223-227.
[16] Dyja, D., Stradomski, Z., Kolan, C. & Stradomski, G. (2012). Eutectoid Decomposition of δ-Ferrite in Ferritic-Austenitic Duplex Cast Steel - Structural and Morphological Study. Materials Science Forum. 706-709, 2314-2319.
Go to article

Authors and Affiliations

Grzegorz Tęcza
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

As the amount of high-capacity secondary battery waste gradually increased, waste secondary batteries for industry (high-speed train & HEV) were recycled and materialization studies were carried out. The precipitation experiment was carried out with various conditions in the synthesis of LiNi0.6Co0.2Mn0.2O2 material using a Taylor reactor. The raw material used in this study was a leaching solution generated from waste nickel-based batteries. The nickel-cobalt-manganese (NCM) precursor was prepared by the Taylor reaction process. Material analysis indicated that spherical powder was formed, and the particle size of the precursor was decreased as the reaction speed was increased during the preparation of the NCM. The spherical NCM powder having a particle size of 10 µm was synthesized using reaction conditions, stirring speed of 1000 rpm for 24 hours. The NCM precursor prepared by the Taylor reaction was synthesized as a cathode material for the LIB, and then a coin-cell was manufactured to perform the capacity evaluation.
Go to article

Bibliography

[1] A.M. Bernardes, D.C.R. Espinosa, J.A.S. Tenorio, J. Power Sour. 130, 291 (2004).
[2] D.W. Kim, I. J. Park, N.K. Ahn, H.C. Jung, S.H. Jung, J.Y. Choi, D.H. Yang, J. of Kor. Inst. of Res. Rec. 27 (4), 36 (2018).
[3] D.H. Han, I.J. Park, M.J. Kim, D.W. Kim, H.C. Jung, Kor. J. Met. Mater. 57 (6), 360 (2019).
[4] W.S. Kim, J. Chem. Eng. Jpn. 47, 115 (2014).
[5] R. Schmuch, V. Siozios, M. Winter, T. Placke, Mat. Matters 15, 2 (2020).
Go to article

Authors and Affiliations

Hang-Chul Jung
1
ORCID: ORCID
Deokhyun Han
1
ORCID: ORCID
Dae-Weon Kim
1
ORCID: ORCID
Byungmin Ahn
2
ORCID: ORCID

  1. Institute for Advanced Engineering (IAE), Yongin, Korea
  2. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
Download PDF Download RIS Download Bibtex

Abstract

The study discusses the issues of low durability of dies used in the first operation of producing a valve type forging from high nickel steel assigned for the application in motor truck engines. The analyzed process of manufacturing the exhaust valve forgings is realized in the coextrusion technology, followed by forging in closed dies. This process is difficult to master, mainly due to elevated adhesion of the charge material (high nickel steel – NCF3015) to the tool substrate as well as very high abrasive wear of the tool, most probably caused by the dissolution of hard carbide precipitates during the charge heating. A big temperature scatter of the charge during the heating and its short presence in the inductor prevents microstructure homogenization of the bearing roller and dissolution of hard precipitates. In effect, this causes an increase of the forging force and the pressures in the contact, which, in extreme cases, is the cause of the blocking of the forging already at the beginning of the process. In order to analyze this issue, complex investigations were conducted, which included: numerical modelling, dilatometric tests and hardness measurements. The microstructure examinations after the heating process pointed to lack of structure repeatability; the dilatometric tests determined the phase transformations, and the FEM results enabled an analysis of the process for different charge hardness values. On the basis of the conducted analyzes, it was found that the batch material heating process was not repeatable, because the collected samples showed a different amount of dissolved carbides in the microstructure, which translated into different hardnesses (from over 300 HV to 192 HV). Also, the results of numerical modeling showed that lower charge temperature translates into greater forces (by about 100 kN) and normal stresses (1000 MPa for the nominal process and 1500 MPa for a harder charge) and equivalent stresses in the tools (respectively: 1300 MPa and over 1800 MPa), as well as abrasive wear (3000 MPa mm; 4500 MPa mm). The obtained results determined the directions of further studies aiming at improvement of the production process and thus increase of tool durability.
Go to article

Authors and Affiliations

M.R. Hawryluk
1
ORCID: ORCID
M. Lachowicz
1
ORCID: ORCID
M. Janik
1
ORCID: ORCID
Z. Gronostajski
1
ORCID: ORCID
M. Stachowicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5 Ignacego Łukasiewicza Str., 50-371 Wrocław , Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work the conical Ni structures were obtained from an electrolyte containing NH4Cl as a crystal modifier. This process is called one-step method and allows to cover large areas with micro- and nanostructures during a single electrodeposition. Presence of NH4Cl promotes a vertical direction of structure growth in order to block a horizontal one. Additionally, this method does not require using chromic acid solution, which is dangerous for the environment. Due to the ferromagnetic properties of Ni, obtained coatings could be applied as magnetic devices. The influence of the parameters such as a preparation of copper substrate, a composition of electrolyte and electrodeposition conditions (time, the electrolyte temperature and current density) was investigated in this work.
Go to article

Bibliography

[1] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 307-326 (2010). DOI: https://doi.org/10.1016/j.pecs.2009.11.002
[2] L . Huang, M. Wei, S. Zaman, A. Ali, B.Y. Xia, Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting, Chem. Eng. J. 398, 125669 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125669
[3] Z . He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater. 13, 1764-1770 (2004). DOI: https://doi.org/10.1016/j.diamond.2004.03.004
[4] M.N. Krstajić Pajić, S.I. Stevanović, V. V. Radmilović, A. Gavrilović- Wohlmuther, P. Zabinski, N.R. Elezović, V.R. Radmilović, S.L. Gojković, V.M. Jovanović, Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method, Appl. Catal. B Environ. 243, 585-593 (2019). DOI: https://doi.org/10.1016/j.apcatb.2018.10.064
[5] D. Kutyła, K. Kołczyk-Siedlecka, A. Kwiecińska, K. Skibińska, R. Kowalik, P. Żabiński, Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study, J. Solid State Electrochem. 23, 3089-3097 (2019). DOI: https://doi.org/10.1007/s10008-019-04374-7
[6] M . Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8, 23-39 (2015). DOI: https://doi.org/10.1007/s12274-014-0591-z
[7] V .D. Jović, B.M. Jović, U. Lačnjevac, N.V. Krstajić, P. Zabinski, N.R. Elezović, Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions, J. Electroanal. Chem. 819, 16-25 (2018). DOI: https://doi.org/10.1016/j.jelechem.2017.06.011
[8] P.R. Zabinski, S. Meguro, K. Asami, K. Hashimoto, Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol·m-3 NaOH, Mater. Trans. 47, 2860-2866 (2006). DOI: https://doi.org/10.2320/matertrans.47.2860
[9] L. Sun, P.C. Searson, C.L. Chien, Magnetic anisotropy in prismatic nickel nanowires, Appl. Phys. Lett. 79, 4429-4431 (2001). DOI: https://doi.org/10.1063/1.1428113
[10] F. Tian, A. Hu, M. Li, D. Mao, Superhydrophobic nickel films fabricated by electro and electroless deposition, Appl. Surf. Sci. 258, 3643-3646 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.130
[11] Z . Chen, F. Tian, A. Hu, M. Li, A facile process for preparing superhydrophobic nickel films with stearic acid, Surf. Coatings Technol. 231, 88-92 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.01.053
[12] S. Rahimi, S. Shahrokhian, H. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem. 810, 78-85 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.01.004
[13] T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19, 035201 (2008). DOI: https://doi.org/10.1088/0957-4484/19/03/035201
[14] T. Hang, A. Hu, H. Ling, M. Li, D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400-2404 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.10.074
[15] N . Wang, T. Hang, S. Shanmugam, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition, CrystEngComm. 16, 6937-6943 (2014). DOI: https://doi.org/10.1039/c4ce00565a
[16] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surf. Coatings Technol. 283, 318-328 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.11.008
Go to article

Authors and Affiliations

K. Skibińska
1
ORCID: ORCID
S. Semeniuk
1
D. Kutyła
1
ORCID: ORCID
K. Kołczyk-Siedlecka
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of investigations into dry methane reforming (DMR). The process was aimed at obtaining synthesis gas required for the production of dimethyl ether (DME). The effect of temperature, pressure and inlet gas composition on the process was determined in the experimental part of this work. The tests were carried out in a laboratory tubular reactor over a Ni/CaO–Al2O3 catalyst. The obtained experimental results were used to verify literature kinetic data and to develop a mathematical model of the DMR process.
Go to article

Bibliography

Alipour Z., Rezaei M., Meshkani F., 2014. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming methane. Fuel, 129, 197–203. DOI: 10.1016/j.fuel.2014.03.045.
Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N., 2018. Catalyst design for dry reforming of methane: Analysis review. Renewable Sustainable Energy Rev., 82, 2570–2585. DOI: 10.1016/j.rser.2017.09.076.
Bawadi A., Nur Azeanni A.G., Dai-Vet N.V., 2017. Recent advances in dry reforming of methane over Ni-based catalysts. J. Cleaner Prod., 162, 170–185. DOI: 10.1016/j.jclepro.2017.05.176.
Benguerba Y., Dehimi L., Virginie M., Dumas C., Ernst B., 2015. Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed bed catalytic reactor. Reac. Kinet. Mech. Cat., 114, 109–119. DOI: 10.1007/s11144-014-0772-5.
Borowiecki T., 2006. Coking of catalysts in essential chemical processes. Przem. Chem., 85, 699–702. Borowiecki T., Gołebiowski A., 2005. Modern synthesis gas and hydrogen plants. Przem. Chem., 84, 503–507.
Chanburanasiri N., Ribeiro A.M., Rodrigues A.E., Laosiripojana N., Assbumrungrat S., 2013. Simulation of methane steam reforming enhanced by in situ CO2 sorption utilizing K2CO3 promoted hydrotalcites for H2 production. Energy Fuels 27, 4457–4470. DOI: 10.1021/ef302043e.
Chein R.Y., Fung W.Y., 2019. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy, 44, 14303–14315. DOI: 10.1016/j.ijhydene.2019.01.113.
Collodi G., Wheeler F., 2010. Hydrogen production via steam reforming with CO2 capture. Chem. Eng. Trans., 19, 37–42. DOI: 10.3303/CET1019007.
Debek R., Gramatyka A., Motak M., da Costa P., 2014. Syngas production by dry reforming of methane over hydrotalcite-derived catalysts. Przem. Chem., 93, 2026–2032.
Ding Y., Alpay E., 2000. Adsorption-enhanced steam-methane reforming. Chem. Eng. Sci., 55, 39–3940. DOI: 10.1016/S0009-2509(99)00597-7.
Enger B.C., Lødeng R., Holmen A., 2008. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal.,��, 346, 1–27. DOI: 10.1016/j.apcata.2008.05.018.
Farniaei M., Abbasi M., Rahnama H., Rahimpour M.R., Shariatic A., 2014. Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation. J. Nat. Gas Sci. Eng., 20, 132–146. DOI: 10.1016/j.jngse.2014.06.010.
Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane – Part I: Reaction kinetics and sorbent capacity. Fuel, 99, 154–164. DOI: 10.1016/j.fuel.2012.04.016.
Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2009. Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates. Can. J. Chem. Eng., 87, 945–956. DOI: 10.1002/cjce.20223.
Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2010. Methane steam reforming in large pore catalyst. Chem. Eng. Sci., 65, 1539–1550. DOI: 10.1016/j.ces.2009.10.018.
Pena M., Gómez J., Fierro J.L.G., 1996. New catalytic routes for syngas and hydrogen production. Appl. Catal., A., 144, 7–57. DOI: 10.1016/0926-860X(96)00108-1.
Richardson J.T., Paripatayadar S.A., 1990. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal., 61, 293-309. DOI: 10.1016/S0166-9834(00)82152-1.
Rostrup-Nielsen J.R., Sehested J., Norskov J.K., 2002. Hydrogen and synthesis gas by steam- and CO2 reforming. Adv. Catal., 47, 65–138. DOI: 10.1016/S0360-0564(02)47006-X.
Snoeck J.W., Froment G.F., Fowles M., 2002. Steam/CO2 reforming of methane. Carbon filament formation by the Boundouard reaction and gasification by CO2, by H2 and by steam: Kinetics study. Ind. Eng. Chem. Res., 41, 4252–4265. DOI: 10.1021/ie010666h.
Wang Y.N., Rodrigues A. E., 2005. Hydrogen production from steam methane reforming coupled with in-situ CO2 capture: Conceptual parametric study. Fuel, 84, 1778–1789. DOI: 10.1016/j.fuel.2005.04.005.
Wender I., 1996. Reactions of synthesis gas. Fuel Process. Technol., 48, 189–297. DOI: 10.1016/S0378-3820(96)01048-X.
Xiu G., Li P., Rodrigues A.E., 2003. Adsorption-enhanced steam-methane reforming with intraparticle-diffusion limitations. Chem. Eng. J., 95, 83–93. DOI: 10.1016/S1385-8947(03)00116-5.
York A.P.E., Xiao T., Green M.L.H., 2003. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal., 22, 345-358. DOI: 10.1023/A:1023552709642.
Zambrano D., Soler J., Herguido J., Menéndez M., 2019. Kinetic study of dry reforming of methane over Ni- Ce/Al2O3 catalyst with deactivation. Top. Catal., 62, 456–466. DOI: 10.1007/s11244-019-01157-2.
Zambrano D., Soler J., Herguido J., Menéndez M., 2020. Conventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models. Chem. Eng. J., 393, 124775. DOI: 10.1016/j.cej.2020.124775.
Zhang G., Liu J., Xu Y., Sun Y., 2018. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017). Int. J. Hydrogen Energy, 43, 15030–15054. DOI: 10.1016/j.ijhydene.2018.06.091.
Go to article

Authors and Affiliations

Robert Cherbański
1
ORCID: ORCID
Ewelina Franczyk
2
Michał Lewak
1
Piotr Machniewski
1
Eugeniusz Molga
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  2. Łukasiewicz Research Network – New Chemical Syntheses Institute, Al. Tysiaclecia Panstwa Polskiego 13a, 24-110 Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on nanocomposite nickel/graphene oxide (Ni / GO) coatings produced by electrochemical reduction method on a steel substrate. Discussed is the method of manufacturing composite coatings with nickel matrix and embedded graphene oxide flakes. For comparative purposes, the studies also included a nanocrystalline Ni coating without embedded graphene oxide flakes. Graphene oxide was characterized by Raman spectroscopy, infrared spectroscopy (FTIR) and transmission (TEM) and scanning (SEM) electron microscopy. Results of studies on the structure of nickel and composite Ni/GO coatings deposited in a bath containing different amount of graphene oxide are presented. The coatings were characterized by scanning electron microscopy, light microscopy, Raman spectroscopy and X-ray diffraction. The adhesion of the prepared coatings to the substrate was examined by the scratch method. The microhardness of the coatings was measured using the Vickers method on perpendicular cross-sections to the surface. Corrosion tests of the coatings were investigated using the potentiodynamic method. The influence of graphene oxide on the structure and properties of composite coatings deposited from baths with different content of graphene oxide was determined.

Go to article

Authors and Affiliations

G. Cieślak
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the electrodeposition of nickel composite coatings reinforced with the ceramic SiC particles. A Watts type galvanic bath modified with various organic additives was used. These additives were: 2-sulfobenzoic acid imide (LSA), dioctyl sulfosuccinate sodium salt (DSS), sodium dodecyl sulfate (SDS), tris (hydroxymethyl) aminomethane (THAM) and hexamethyldisilizane (HMDS). The nickel composite coating was electrodeposited on a 2xxx aluminum alloy series substrate (EN-AW 2017) with zinc interlayer. Studies concerned the effect of the applied organic additives on properties of composite coatings such as: microstructure, microhardness, adhesion to the substrate, corrosion resistance and roughness. The structure of the coatings was assessed by scanning electron microscopy and light microscopy. Based on the studies of zeta potential it was found that the bath modification had a significant impact on the amount of the ceramic phase embedded in metal matrix. The tests conducted in a model 0.01 M KCl solution were not fully representative of the true behavior of particles in a Watts bath.

Go to article

Authors and Affiliations

M. Nowak
J. Mizera
A. Kłyszewski
A. Dobkowska
S. Boczkal
ORCID: ORCID
A. Kozik
P. Koprowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Nickel slag has a high-content iron and is a secondary utilization resource with great development potential. The coal-based direct reduction is an innovative technology that can be used to utilize the iron resources in nickel slag. The effect of the particle size of nickel slag on the strength and the reduction of nickel slag-coal composite briquettes were investigated. Four samples with particle size of 75~106 μm, 106~150 μm, 150~270 μm, and >270 μm were selected. The drop strength increased 9.4 times and the compressive strength reached 281.1 N when the nickel slag particle size decreased from >270 μm to 75~106 μm. The reduction degree determined by the data from the thermogravimetric experiment indicated that its maximum was 79.545%. The reduction experiments performed at 1200°C for 45 minutes indicated that the nickel slag with particle sizes between 75~106 µm were appropriate for the reduction of the nickel slag-coal composite briquettes.

Go to article

Authors and Affiliations

Xiaoming Li
Yi Li
Xiangdong Xing
Yanjun Wang
ORCID: ORCID
Zhenyu Wen
Haibo Yang
Download PDF Download RIS Download Bibtex

Abstract

In this work the nickel-based coatings were obtained by electroless catalytic deposition on light-hardened resins dedicated for 3D printing by SLA method. The effect of external magnetic field application on the properties of nickel-based coatings was determined. During metallization, the magnetic field was applied to the sample’s surface with different orientations. Due to the magnetic properties of metallic ions, the influence of the magnetic field on coatings properties is expected. The coatings were analyzed by Energy-dispersive X-ray spectroscopy (ED S) the X-Ray diffraction (XRD ) methods, and surface morphology was observed by scanning electron microscopy (SEM). The catalytic properties in a hydrogen evolution reaction (HER ) were measured by electrochemical method in 1 M NaOH solution. The best catalytic activity has been observed in the case of the ternary Ni-Fe-P alloy deposited under a parallel magnetic field. The primary outcome of the presented research is to produce elements based on 3D printing from resins, which can then be metallized and used for highly-active materials deposited on complex 3D models. Furthermore, these elements can be used as low-cost, highly-developed sensors and catalysts for various chemical processes.
Go to article

Authors and Affiliations

K. Kołczyk-Siedlecka
1
ORCID: ORCID
D. Kutyła
1
ORCID: ORCID
K. Skibińska
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more