Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to multiple soft fault diagnosis of analog nonlinear circuits. A two-stage algorithm is offered enabling us to locate the faulty circuit components and evaluate their values, considering the component tolerances. At first a preliminary diagnostic procedure is performed, under the assumption that the non-faulty components have nominal values, leading to approximate and tentative results. Then, they are corrected, taking into account the fact that the non-faulty components can assume arbitrary values within their tolerance ranges. This stage of the algorithm is carried out using the linear programming method. As a result some ranges are obtained including possible values of the faulty components. The proposed approach is illustrated with two numerical examples.

Go to article

Authors and Affiliations

Michał Tadeusiewicz
Stanisław Hałgas
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with multiple soft fault diagnosis of nonlinear analog circuits comprising bipolar transistors characterized by the Ebers-Moll model. Resistances of the circuit and beta forward factor of a transistor are considered as potentially faulty parameters. The proposed diagnostic method exploits a strongly nonlinear set of algebraic type equations, which may possess multiple solutions, and is capable of finding different sets of the parameters values which meet the diagnostic test. The equations are written on the basis of node analysis and include DC voltages measured at accessible nodes, as well as some measured currents. The unknown variables are node voltages and the parameters which are considered as potentially faulty. The number of these parameters is larger than the number of the accessible nodes. To solve the set of equations the block relaxation method is used with different assignments of the variables to the blocks. Next, the solutions are corrected using the Newton-Raphson algorithm. As a result, one or more sets of the parameters values which satisfy the diagnostic test are obtained. The proposed approach is illustrated with a numerical example.

Go to article

Authors and Affiliations

Michał Tadeusiewicz
Stanisław Hałgas
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with a multiple fault diagnosis of DC transistor circuits with limited accessible terminals for measurements. An algorithm for identifying faulty elements and evaluating their parameters is proposed. The method belongs to the category of simulation before test methods. The dictionary is generated on the basis of the families of characteristics expressing voltages at test nodes in terms of circuit parameters. To build the fault dictionary the n-dimensional surfaces are approximated by means of section-wise piecewise-linear functions (SPLF). The faulty parameters are identified using the patterns stored in the fault dictionary, the measured voltages at the test nodes and simple computations. The approach is described in detail for a double and triple fault diagnosis. Two numerical examples illustrate the proposed method.

Go to article

Authors and Affiliations

S. Hałgas
Download PDF Download RIS Download Bibtex

Abstract

The present article investigates the dynamic behavior of a fully assembled turbogenerator system influenced by misalignment. In the past, most of the researchers have neglected the foundation flexibility in the turbogenerator systems in their study, to overcome this modelling error a more realistic model of a turbogenerator system has been attempted by considering flexible shafts, flexible coupling, flexible bearings and flexible foundation. Equations of motion for fully assembled turbogenerator system including flexible foundations have been derived by using finite element method. The methodology developed based on least squares technique requires forced response information to quantify the bearing–coupling–foundation dynamic parameters of the system associated with different faults along with residual unbalances. The proposed methodology is tested for the various level of measurement noise and modelling error in the system parameters, i.e., 5% deviation in E (modulus of elasticity) and ρ (density), respectively, for robustness of the algorithm. In a practical sense, the condition analyzed in the present article relates to the identification of misalignment and other dynamic parameters viz. bearing and residual unbalance in a rotor integrated with flexible foundation.
Go to article

Authors and Affiliations

Mohit Lal
Download PDF Download RIS Download Bibtex

Abstract

Three phase induction motors are widely used in industrial processes and condition monitoring of these motors is especially important. Broken rotor bars, eccentricity and bearing faults are the most common types of faults of induction motors. Stator current and/or vibration signals are mostly preferred for the monitoring and detection of these faults. Fourier Transform (FT) based detection methods analyse the characteristic harmonic components of stator current and vibration signals for feature extraction. Several types of simultaneous faults of induction motors may produce characteristic harmonic components at the same frequency (with varying amplitudes). Therefore, detection of multiple faults is more difficult than detection of a single fault with FT based diagnosis methods. This paper proposes an alternative approach to detect simultaneous multiple faults including broken rotor bars, static eccentricity and outer/inner-race bearing faults by analysing stator current and vibration signals. The proposed method uses Hilbert envelope analysis with a Normalized Least Mean Square (NLSM) adaptive filter. The results are experimentally verified under 25%, 50%, 75%, 100% load conditions.
Go to article

Authors and Affiliations

Ahmet Kabul
1
Abdurrahman Ünsal
2

  1. Burdur Mehmet Akif Ersoy University, Department of Electrical and Electronic Engineering, 15030, Burdur, Turkey
  2. Kütahya Dumlupınar University, Department of Electrical and Electronic Engineering, 43100, Kütahya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In rotating machineries, misalignment is considered as the second most major cause of failure after unbalance. In this article, model-based multiple fault identification technique is presented to estimate speed-dependent coupling misalignment and bearing dynamic parameters in addition with speed independent residual unbalances. For brevity in analysis, a simple coupled rotor bearing system is considered and analytical approach is used to develop the identification algorithm. Equations of motion ingeneralized co-ordinates are derived with the help of Lagrange’s equation and least squares fitting approach is used to estimate the speed-dependent fault parameters. Present identification algorithm requires independent sets of forced response data which are generated with the help of different sets of trial unbalances. To avoid/suppress the ill-conditioning of regression equation, independent sets of forced response data are obtained by rotating the rotor in clock-wise and counter clock-wise directions, alternatively. Robustness of algorithm is checked for different levels of measurement noise.
Go to article

Authors and Affiliations

Mohit Lal
Monalisha Satapathy

This page uses 'cookies'. Learn more