Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The structural system of a multiple strip-shaped pillar-roof is common in underground mine exploitation, and research on its mechanics and micro/macroeconomics is meaningful for utilizing strip-shaped pillar resources. A general model of the structural system of a multiple strip-shaped pillar-roof was established, the deformation mechanism of the model was analysed by material mechanics, and the deflection curve equations of the model were obtained. Based on the stress strain constitutive relation of the strip pillar and cusp catastrophe theory, the nonlinear dynamic instability mechanism of the structural system of a multiple strip-shaped pillar-roof was analysed, and the expressions of the pillar width for maintaining the stability of different types of structural systems were derived. The benefits of different structural systems were calculated using micro/macroeconomic theory, the type of the structural system was determined, and different recovery schemes were obtained. Theoretical application research was applied to a large manganese mine, and the results demonstrate that no pillar recovery was needed in 2016, a 9-m wide artificial pillar could be built to replace a pillar in 2017, and the construction of 14-m wide artificial pillars can be conducted in 2018.

Go to article

Authors and Affiliations

Qingfa Chen
Shiwei Wu
Fuyu Zhao
Download PDF Download RIS Download Bibtex

Abstract

This communication proposes a compact 4-shaped monopole annular ring UWB antenna design. The proposed structure contains multiple radiating strips inside the annular ring, in the form of a 4-shaped and a 50Ω microstrip feed line. A tapered structure with a feed point is chosen to achieve wideband characteristics. The proposed model is printed on a low-priced FR4 substrate with a size of 0.180λ 0 × 0.225λ 0 (20 × 25mm 2). The proposed model achieves a fractional bandwidth of 133.74% in the 2.7 to 13.6 GHz range with S11<-10dB and covers the 3.1-10.6 GHz unlicensed band approved by FCC in 2002 and X-band applications. The antenna exhibits stable and Omni-directional radiation patterns in the operating frequency range. The analysis of the proposed monopole antenna using characteristic modes is performed to obtain a physical understanding of the radiation process occurring on the radiating antenna. The modal significance curves and the modal current distributions are used to analyze the radiating antenna using the first six characteristic modes. The measurement and simulation results show a good agreement.
Go to article

Authors and Affiliations

Bhaskara Rao Perli
1
A. Maheswara Rao
2

  1. Research Scholar, ECE Department, JNTUA, Anantapur, India
  2. ECE Department, PBRVITS, Kavali, India

This page uses 'cookies'. Learn more