Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The usefulness of elastic compliance measurements to estimate crack closure in structural steel and the validity of the assumption of a constant compliance value for the fully open crack is examined. Based on considering different issues related to the experimental technique and compliance data processing, local compliance measurements and the compliance offset method recommended by the ASTM standard are selected to be most suitable for structural steel. The compliance data generated in fatigue tests on I 8G2A steel conducted under a variety of loading conditions enabled to choose an optimal strain gauge positioning and appropriate offset criterion values for the original compliance offset method and its modified (normalized) version. The adequacy of the closure measurements is assessed through checking the ability of the resulting effective stress intensity factors to account for the observed effects of the loading conditions on fatigue crack growth rates.
Go to article

Authors and Affiliations

Małgorzata Skorupa
Andrzej Skorupa
Tomasz Machniewicz
Download PDF Download RIS Download Bibtex

Abstract

Effects of specimen thickness and stress ratio on fatigue crack growth and crack closure levels under constant amplitude loading and after a single overload have been studied experimentally for a structural steel ( I 8G2A). The corresponding crack growth data from the fatigue tests have been presented and evaluated. The experimental trends have been compared to those reported in the literature for various steels. The ability of the effective stress intensity factor range based on crack closure measurements to correlate the observed crack growth response has been investigated.
Go to article

Authors and Affiliations

Małgorzata Skorupa
Andrzej Skorupa
Jaap Schijve
Tomasz Machniewicz
Paweł Korbut
Download PDF Download RIS Download Bibtex

Abstract

Geological and Mining Law enforced in Poland does not provide adequate regulations assuring financial means for a mine closure and mined land rehabilitation. The gradual accumulation of funds within a framework of a mine rehabilitation fund may not provide the full coverage of costs of all the necessary works in the event the exploitation is terminated before lifting all minable resources.

Regulations defining the duties of mining enterprises lack specific preclusions related to assurance of financial means for mine closures in the event a mining license is issued by a staroste (prefect). To address this problem a simplified estimation method for establishing closing costs is put forward in the first stage. This is based on unified indicators related to deposits’ reserves or acreage used for mining activities.

The equivalent of the closure costs established in this manner shall be paid to an escrow account on a similar basis as means of rehabilitation funds are put aside. However, paying the entire amount either in one (preferably) or two instalments is recommended. The introduction of this recommendation requires an amendment to the Geological and Mining Law as well as securing appropriate competences in staroste’s offices along with a convincing communication campaign.

Go to article

Authors and Affiliations

Ryszard Uberman
Download PDF Download RIS Download Bibtex

Abstract

The closure of deep mines, featuring multi level seam extraction, lasts many years. During this time period, the ventilation system must ensure adequate working conditions, and ensure the safety and stability of fan operation in gas and fire hazards conditions. The analysis of air flows and methane inflows during the progress of mining mine excavations closure, is the primary object of the article. Execution of such analysis requires knowledge of the mining mine excavations’ closure schedule, the structure of the ventilation system under consideration, the values of the parameters describing the air flows delivered to the mine excavations, and the current characteristics of operating fans and predicted methane exhalation. A computer database, currently being updated by a mine ventilation department for the VentGraph-Plus computer software, has been used simulate the various ventilation scenarios experienced, during the final stage of closure, including the shutdown of the main fans and the backfilling of shafts. The results of case study, containing 2 variants of simulated examples, are presented in the form of diagrams of methane concentration changes in time at characteristic places of the mine. The completed simulations of ventilation processes during the closure of mine excavations and transfer of inflowing methane, indicate useful possibilities of the computational tool used.
Go to article

Authors and Affiliations

Wacław Dziurzyński
1
ORCID: ORCID
Jerzy Krawczyk
1
ORCID: ORCID
Teresa Pałka
1
ORCID: ORCID
Andrzej Krach
1
ORCID: ORCID
Przemysław Skotniczny
1
ORCID: ORCID

  1. Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article we focus on optimal control problems involving a nonlinear fractional control system of different orders with Caputo derivatives, associated to a Lagrange cost functional. Based on a lower closure theorem for orientor fields combined with Filippov’s approach, we derive an existence result for at least one optimal solution for such a problem.
Go to article

Authors and Affiliations

Rafał Kamocki
1

  1. Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The most worldwide method of liquidating underground hard coal mines is by spontaneous flooding as the result of the discontinuation of the rock mass drainage. Due to the hydrological reconstruction of the previously disturbed water system by mining operations, the movements of the rock mass with the opposite direction than subsidence appear. These movements are called rock mass uplift. This paper aims to present possible hazards related to land surface objects and the environment, which can appear during the flooding of the underground mine. The issue of proper forecasting of this phenomenon has so far been marginal in world literature. To date, only a few analytical methods have been used to predict the possible effects of surface deformation. Nowadays, the most common analytical method of forecasting surface deformation caused by the liquidation of underground workings by flooding is Sroka’s method. In this paper, the authors have presented analyses of flooding scenarios developed for a Polish mine and their impact on the land surface as well as the environment. The scenarios presented in the manuscript were selected for analysis as the most probable concerning the mine and the future plans of the mining enterprise. The process of flooding coal mines results in several risks for surface objects and underground infrastructure. This is why the uplift caused by the flooding of the mine should be predicted. The resulting uplifting movements can also, apart continuous deformation lead to the creation of much more dangerous phenomena involving discontinuous deformations.
Go to article

Bibliography

  1. Álvarez, R., Ordóñez, A., De Miguel, E. & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 184, 219–228. DOI: 10.1016/j.jenvman.2016.09.072
  2. Baglikow, V. (2011). Damage-relevant effects of mine water recovery – conclusions from the Erkelenz hard coal district. Markscheidewesen, 118, 10–16.
  3. Bekendam, R.F. & Pöttgens, J.J.E. (1995). Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. 5tfh International Symposium on Land Subsidence, 3–12.
  4. Blachowski, J., Cacoń, S., & Milczarek, W. (2009). Analysis of post-mining ground deformations caused by underground coal extractions in complicated geological conditions. Acta Geodyn. Geomater, 6(3), 351–357.
  5. Caro Cuenca, M., Hooper, A.J. & Hanssen, R.F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radarinterferometry. Journal of Applied Geophysics, 88, 1–11. DOI: 10.1016/j.jappgeo.2012.10.003
  6. Devleeschouwer, X., Declercq, P.Y., Flamion, B., Brixko, J., Timmermans, A. & Vanneste, J. (2008). Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. Proceedings of Post-Mining 2008, 1–13.
  7. Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021). Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines. Archives of Civil Engineering, 67(3). Dudek, M., & Tajduś, K. (2021). FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment, 100254. DOI: 10.1016/j.gete.2021.100254
  8. Dudek, M., Tajduś, K., Misa, R. & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377
  9. Fenk, J. (2000). An analytical solution for calculating urface heave when flooding underground mine workings , 107, 4220–4422.
  10. Gudmundsson, A., Simmenes, T.H., Larsen, B. & Philipp, S.L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. DOI: 10.1016/j.jsg.2009.08.013
  11. Heitfeld, K., Heitfeld, M., Rosner, P. & Sahl, H. (2003). Controlled mine water increase in Aachen and Sudlimburg stone coal district. 5. Aachener Bergschandemkundliches Kolloquium, 71–85. (in German)
  12. Heitfeld, M., Rosner, P. & Mühlenkamp, M. (2016). Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs in den Wasserprovinzen Reden und
  13. Duhamel. Bewertung des Einwirkungspotentials und Monitoring Konzept-Anstieg bis – 320 m NHN.
  14. Heitfeld, M., Rosner, P., Mühlenkamp, M. & Sahl, H. (2004). Bergschäden im Erkelenzer Steinkohlenrevier. 4. Altbergbaukolloquium, 281–295.
  15. Jakubick, A., Jenk, U. & Kahnt, R. (2002). Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany. Environmental Geology, 42(2–3), 222–234. DOI: 10.1007/s00254-001-0492-9
  16. Jewartowski, T., Mizerka, J. & Mróz, C. (2015). Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Archives of Mining Sciences, 60(3), 697–713. DOI: 10.1515/amsc-2015-0046 (in Polish)
  17. John, A. (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1(1), 35–58. DOI: 10.3390/mining1010004
  18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej. Wydawnictwo Śląsk (in Polish).
  19. Kołodziejczyk, P., Musioł, S. & Wesołowski, M. (2007). Ability to forecast mining area uplift as a result of mine flooding. 63(9), 6–11.
  20. Kowalska, I. J. (2014). Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation. Resources Policy, 41, 124–134. DOI: 10.1016/j.resourpol.2014.05.002
  21. Krzemień, A., Suárez Sánchez, A., Riesgo Fernández, P., Zimmermann, K. & González Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044–1056. DOI: 10.1016/j.jclepro.2016.08.149
  22. Liu, D. (2020). A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotechnica, 15(2), 325–345. DOI: 10.1007/s11440-019-00814-w
  23. Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004. (2020).
  24. Milczarek, W. (2011). Analysis of changes in the rock mass surface after mining in a selected area of the former Wałbrzych Basin.Wroclaw University of Science and Technology. (in Polish).
  25. Mróz, T.M. & Grabowska, W. (2021). The use of geothermal energy in co-generated heat and power production in Poland – a case study. Archives of Environmental Protection, 47(3), 82–91. DOI: 10.24425/aep.2021.138466
  26. Pöttgens, J.J.E. (1985). Bodenhebung durch ansteigendes Grubenwasser. 6. Internationaler Kongress Für Markscheidewesen, 928–938.
  27. Preuβe, A., Kateloe, H.J. & Sroka, A. (2013). Subsidence and uplift prediction in German and Polish hard coal mining.Markscheidewesen, 120, 23–34.
  28. Samsonov, S., D’Oreye, N. & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. DOI: 10.1016/j.jag.2012.12.008
  29. Sattari, A. & Eaton, D. (2014). Finite element modelling of fault stress triggering due to hydraulic fracturing. GeoConvention 2014: FOCUS Adapt, Refine, Sustain.
  30. Schaefer, W. (2007). Ground movements in the tectonics of the Rhenish lignite mining area, 215–225. (in Polish).
  31. Sroka, A. (2005). Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen. 5. Altbergbau- -Kolloquium, 453–462.
  32. Sroka, A., Preuβe, A., Tajduś, K. & Misa, R. (2016). Gutachterliche Stellungnahme zum Einfluss möglicher Grubenwasserregulierungsmaßnahmen auf die Abwasserinfrastruktur der Emschergenossenschaft Teil 1/1: Markscheiderische Beurteilung.
  33. Sroka, A., Tajduś, K. & Misa, R. (2017). Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche.
  34. Tajduś, A. & Tokarski, S. (2020). Risks Related to Energy Policy of Poland Until 2040 (EPP 2040). Archives of Mining Sciences, 877–899.
  35. Tajduś, K., Sroka, A., Misa, R. & Dudek, M. (2017). Examples of threats to the ground surface with discontinuous deformations of the surface type appearing over liquidated underground mining excavations, 19(3), 3–10. (in Polish).
  36. Vervoort, A. & Declercq, P.-Y. (2017). Surface movement above old coal longwalls after mine closure. International Journal of Mining Science and Technology, 27(3), 481–490. DOI: 10.1016/j.ijmst.2017.03.007
  37. Vervoort, A. & Declercq, P.-Y. (2018). Upward surface movement above deep coal mines after closure and flooding of underground workings. International Journal of Mining Science and Technology, 28(1), 53–59. https://doi.org/10.1016/j.ijmst.2017.11.008
  38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (No 2), 58–67. DOI: 10.24425/aep.2020.133475
  39. Wesołowski, M. (2012). Computer simulation of the impact of flooding mine workings of the former mine "Gliwice" and "Pstrowski" on land surface, 68(5), 54–59. (in Polish).
  40. Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P. & Bonczyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology, 212, 103253. DOI: 10.1016/j.coal.2019.103253
  41. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), 108–119. DOI: 10.24425/aep.2021.1384
Go to article

Authors and Affiliations

Mateusz Dudek
1
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID
Janusz Rusek
2
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
  2. Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Physical mechanisms of gas recirculation and wake closure were investigated by modeling the gas field generated by High Pressure Gas Atomizer using computational fluid dynamics. A recirculation mechanism based on axial and radial gas pressure gradient was proposed to explain the gas recirculation. The occurrence of wake closure is regarded as a natural result when elongated wake is gradually squeezed by expansion waves of increasing intensity. An abrupt drop could be observed in the numerical aspiration pressure curve, which corresponds well with the experimental results. The axial gradient of gas density is considered as the reason that results in the sudden decrease in aspiration pressure when wake closure occurs. Lastly, it is found that a shorter protrusion length and a smaller melt tip diameter would lead to a smaller wake closure pressure, which could benefit the atomizer design to produce fine metal powder with less gas consumption.
Go to article

Authors and Affiliations

Mingxiang Liu
1
ORCID: ORCID
Shan Zhou
2

  1. Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology, Shanghai 200444, China
  2. Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, 1954 Huashan Road, Shanghai 200030, China
Download PDF Download RIS Download Bibtex

Abstract

Angle calibrations are widely used in various fields of science and technology, while in the high-precision angle calibrations, a complete closure method which is complex and time-consuming is common. Therefore, in order to improve the measurement efficiency and maintain the accuracy of the complete closure method, an improved calibration method was proposed and verified by the calibration of a high-precision angle comparator with sub-arc-second level. Firstly, a basic principle and algorithm of angle calibration based on complete closure and symmetry connection theory was studied. Then, depending on the pre-established calibration system, the comparator was respectively calibrated by two calibration methods. Finally, by comparing En values of two calibration results, the effectiveness of the improved method was verified. The calibration results show that the angle comparator has a stable angle position error of 0:1700 and a measurement uncertainty of 0:0500 (k = 2). Through method comparisons, it was shown that the improved calibration method can greatly reduce calibration time and improve the calibration efficiency while ensuring the calibration accuracy, and with the decrease of measurement interval, the improvement of calibration efficiency was more obvious.
Go to article

Authors and Affiliations

Yangqiu Xia
1 2 3
Zhilin Wu
1
Ming Huang
2
Xingbao Liu
2 3
Liang Mi
2 3
Qiang Tang
2 3

  1. Nanjing University of Science & Technology, School of Mechanical Engineering, Nanjing, China
  2. Institute of Machinery Manufacturing Technology, CAEP, Mianyang, China
  3. National Machine Tool Production Quality Supervision Testing Center (Sichuan), Chengdu, China
Download PDF Download RIS Download Bibtex

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.

Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
Jarosław Staszczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an example illustrating the problems of assessing the causes of damage that occurred to building structures located in mining and post-mining area. It is frequently necessary to determine whether probable damages came from other, non-mining causes or were caused by underground mining. This issue is particularly significant when it comes to monumental, historical objects because the cost of repairs is typically very high. The purpose of this work is to demonstrate, using the magnificent church as an example, that damage to building objects situated in mining areas does not necessarily result from mining activities. As a result, every such situation should be thoroughly evaluated to determine whether such a relationship exists. For the assessment of such a conclusion, multidirectional studies in the framework of this work were carried out: hydrogeological, mining and technical factors that cause the damage to the church building in question were analysed.
Go to article

Authors and Affiliations

Edward Cempiel
1
Piotr Strzałkowski
1
ORCID: ORCID
Roman Ścigała
1
ORCID: ORCID
Izabela Bryt-Nitarska
2
ORCID: ORCID

  1. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  2. Strata Mechanics Research Institute, Polish Academy of Science, 25 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures. The algorithm is based on sparse updates of antenna sensitivities involving various methods that include the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference algorithm. Experimental validation is also provided.

Go to article

Authors and Affiliations

Sławomir Kozieł
Anna Pietrenko-Dąbrowska
Download PDF Download RIS Download Bibtex

Abstract

On the first place, author presents the situation of theological faculties before the II World War. The Roman Catholic Church in Poland had five of them: in Cracow, Wilnius, Lwow, Warsaw and within the framework of Catholic University of Lublin. The four of them developed their educational activity in many various ways at the national universities.

After the II World War, due to the changing border lines of Polish country – the Roman Catholic Church lost theological faculties in Wilnius and Lwow. The Faculty of Theology at the Wrocław University, existing since the year of 1702 and which was active even during the time of II World War (within the border lines of the III Reich), could not exist after the end of the war. In the year of 1954 the authorities of People’s Republic of Poland – without the permission of the Holly See liquidated theological faculties from the Jagiellonian University (founded by Saint Queen Jadwiga in 1397) and from the Warsaw University–removing it arbitrary to the previously non-existent Academy of Catholic’s Theology in Warsaw. The academy was a national school, and Polish Episcopal Conference, under certain conditions, only acknowledged its foundation. Academic degrees and scholars titles of this academy were canonically invalid.

Card. Karol Wojtyla creating the Episcopal Conference of Catholic’s Science and Council of the Polish Episcopal Conference caused reaction of the Holly See. Vatican’s authorities renewed the activity of Faculty of Theology in Wrocław (the year of 1968) and erected new – non-existent till now – Faculty of Theology in Poznań. Moreover, the Holly See did not approve the closure of theological faculties in Cracow and Warsaw. Thank to that, in People’s Republic of Poland – there were five theological faculties, under Church’s jurisdiction, in a similar way to the pre-war territory of the country. In 1974, they received the noble title of “Pope’s faculties”. Certainly, academic degrees and scholars titles, gained at these faculties by their graduates and scholars were invalid to the state authorities. After long negotiations, the Deal (June 30th 1989) was accepted by the government of People’s Republic of Poland and Polish Episcopal Conference. The Deal stated the approval of all Pope’s faculties and the faculty of philosophy of Society of Jesus in Cracow. In return, the Holly See resumed Academy of Catholic’s Theology (ACT) and granted its canonical validation. Imposed Deal was a serious contribution to the normalization of Church-State relations in Poland. It is certain, that it was also a great achievement of the Roman Catholic Church, and was accomplished– as it is commonly considered – not without the influence of electing, on October 16th 1978, card. Karol Wojtyla for pope John Paul II.

Go to article

Authors and Affiliations

Ks. Adam Kubiś
Download PDF Download RIS Download Bibtex

Abstract

The liquidation of underground mines by the flooding leads to movements of the rock mass and land surface as a result of pressure changes in the flooded zones. The changes resulting from the rising water table caused by the changes in the stress and strain state, as well as the physical and mechanical properties of rock layers, can lead to damage to building structures and environmental changes, such as chemical pollution of the surface water. For this reason, the ability to predict the movements of rock masses generated as a result of mine closure by flooding serves a key function in relation to the protection of the land surface and buildings present thereon. This paper presents an analysis of a steel industrial portal-frame structure under loading generated by the liquidation of a mine by flooding. The authors obtained land surface uplift results for the liquidated mine and used them in a numerical simulation for the example building. Calculations were performed for different cases, and the results were compared to determine whether limit states may be exceeded. A comparison was made between the cases for the design state and for additional loading caused by the uplift of the subsurface layer of the rock mass.
Go to article

Bibliography


[1] M. Kawulok, "Mining damages in construction". Warszawa: Instytut Techniki Budowlanej, 2010. (in Polish)
[2] J. Kwiatek, "Civil structures in mining areas". Katowice: Główny Instytut Górnictwa, 2006. (in Polish)
[3] J. A. Ledwoń, "Civil engineering in mining areas". Warszawa: Arkady, 1983. (in Polish)
[4] K. Tajdus, “Numerical simulation of underground mining exploitation influence upon terrain surface,” Arch. Min. Sci., vol. 58, no. 3, 2013, https:/doi.org/10.2478/amsc-2013-0042
[5] K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance,” Int. J. Rock Mech. Min. Sci., vol. 104, 2018, https://doi.org/10.1016/j.ijrmms.2018.02.005
[6] A. Saeidi, O. Deck, M. Al heib, and T. Verdel, “Development of a damage simulator for the probabilistic assessment of building vulnerability in subsidence areas,” Int. J. Rock Mech. Min. Sci., vol. 73, pp. 42–53, Jan. 2015, doi: https://doi.org/10.1016/j.ijrmms.2014.10.007
[7] A. Sroka, S. Knothe, K. Tajduś, and R. Misa, “Point Movement Trace Vs. The Range Of Mining Exploitation Effects In The Rock Mass,” Arch. Min. Sci., vol. 60, no. 4, 2015, doi: https://doi.org/10.1515/amsc-2015-0060
[8] A. Misa Rafałand Sroka, K. Tajduś, and M. Dudek, “Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining,” J. Sustain. Min., 2019, doi: https://doi.org/10.1016/j.jsm.2018.10.002
[9] L. Szojda and Ł. Kapusta, “Evaluation of the Elastic Model of a Building on a Curved Mining Ground Based on the Results of Geodetic Monitoring,” Arch. Min. Sci., vol. 65, no. No 2, pp. 213–224, 2020, doi: https://doi.org/10.24425/ams.2020.133188
[10] I. Djamaluddin, Y. Mitani, and T. Esaki, “Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model,” Int. J. Rock Mech. Min. Sci., vol. 48, no. 3, pp. 380–393, Apr. 2011, doi: https://doi.org/10.1016/j.ijrmms.2011.01.004
[11] C. Braitenberg, T. Pivetta, D. F. Barbolla, F. Gabrovšek, R. Devoti, and I. Nagy, “Terrain uplift due to natural hydrologic overpressure in karstic conduits,” Sci. Rep., vol. 9, no. 1, p. 3934, Dec. 2019, doi: https://doi.org/10.1038/s41598-019-38814-1
[12] N. Fowkes et al., “Models for the effect of rising water in abandoned mines on seismic activity,” Int. J. Rock Mech. Min. Sci., vol. 77, pp. 246–256, Jul. 2015, doi: https://doi.org/10.1016/j.ijrmms.2015.04.011
[13] G. Strozik, R. Jendruś, A. Manowska, and M. Popczyk, “Mine Subsidence as a Post-Mining Effect in the Upper Silesia Coal Basin,” Polish J. Environ. Stud., vol. 25, no. 2, pp. 777–785, 2016, doi: https://doi.org/10.15244/pjoes/61117
[14] K. Heitfeld, M. Heitfeld, P. Rosner, and H. Sahl, “The controlled rise in mine water in the Aachen and Sud Limburg coalfields” in 5. Aachener Bergschandemkundliches Kolloquium, 2003, pp. 71–85. (in German)
[15] A. Jakubick, U. Jenk, and R. Kahnt, “Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany,” Environ. Geol., vol. 42, no. 2–3, pp. 222–234, Jun. 2002, doi: https://doi.org/10.1007/s00254-001-0492-9
[16] A. Krzemień, A. Suárez Sánchez, P. Riesgo Fernández, K. Zimmermann, and F. González Coto, “Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management,” J. Clean. Prod., vol. 139, pp. 1044–1056, Dec. 2016, doi: https://doi.org/10.1016/j.jclepro.2016.08.149
[17] A. Sroka, K. Tajduś, and R. Misa, “Expert opinion on the impact of the rise in mine water in the eastern field of the Ibbenbüren mine on the land surface”, 2017. (in German)
[18] “Management of environmental risks during and after mine closure (acronym: MERIDA), Contract No. RFCR-CT-2015-00004,” 2020.
[19] P. Riesgo Fernández, G. Rodríguez Granda, A. Krzemień, S. García Cortés, and G. Fidalgo Valverde, “Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines,” Int. J. Rock Mech. Min. Sci., vol. 126, p. 104175, Feb. 2020, doi: https://doi.org/10.1016/j.ijrmms.2019.104175
[20] A. Vervoort, “Surface movement above an underground coal longwall mine after closure,” Nat. Hazards Earth Syst. Sci., vol. 16, no. 9, pp. 2107–2121, Sep. 2016, doi: https://doi.org/10.5194/nhess-16-2107-2016
[21] M. Dudek, K. Tajduś, R. Misa, and A. Sroka, “Predicting of land surface uplift caused by the flooding of underground coal mines – A case study,” Int. J. Rock Mech. Min. Sci., vol. 132, pp. 104–377, Aug. 2020, doi: https://doi.org/10.1016/j.ijrmms.2020.104377
[22] A. Preuβe, H. J. Kateloe, and A. Sroka, “Subsidence and uplift prediction in German and Polish hard coal mining,” Markscheidewesen, vol. 120, pp. 23–34, 2013.
[23] A. Vervoort and P.-Y. Declercq, “Surface movement above old coal longwalls after mine closure,” Int. J. Min. Sci. Technol., vol. 27, no. 3, pp. 481–490, May 2017, doi: https://doi.org/10.1016/j.ijmst.2017.03.007
[24] A. Vervoort and P.-Y. Declercq, “Upward surface movement above deep coal mines after closure and flooding of underground workings,” Int. J. Min. Sci. Technol., vol. 28, no. 1, pp. 53–59, Jan. 2018, doi: https://doi.org/10.1016/j.ijmst.2017.11.008
[25] M. Wesołowski, R. Mielimąka, R. Jendruś, and M. Popczyk, “Influence Analysis of Mine Flooding from the Environmental Standpoint: Surface Protection,” Polish J. Environ. Stud., vol. 27, no. 2, pp. 905–915, Jan. 2018, https://doi.org/doi: 10.15244/pjoes/76114
[26] V. Baglikow, “Damage-relevant effects of the rise in mine water in the Erkelenz hard coal district. Publication series Institute for Mining Surveying,” Rheinisch- Westfälischen Technischen Hochschule Aachen, 2010. (in German)
[27] K. Firek, J. Rusek, and A. Wodyński, “Decision Trees in the Analysis of the Intensity of Damage to Portal Frame Buildings in Mining Areas,” Arch. Min. Sci., vol. 60, no. 3, 2015, doi: https://doi.org/10.1515/amsc-2015-0055
[28] A. Cholewicki, M. Kawulok, Z. Lipski, and J. Szulc, Principles for determining loads and checking the limit states of civil structures located in mining areas with reference to the Eurocodes. Design according to Eurocodes. Warszawa: Instytut Techniki Budowlanej, 2012. (in Polish)
[29] EN 1990:2004 Eurocode - Basis of structural design
[30] Autodesk, “Robot Structural Analysis Professional.” 2020.
[31] EN 1991-1-3. Eurocode 1: Actions on structures - Part 1–3: General actions – Snow loads
[32] EN 1991-1-4. Eurocode 1: Actions on structures - Part 1–3: General actions – Wind loads
Go to article

Authors and Affiliations

Mateusz Dudek
ORCID: ORCID
Janusz Rusek
ORCID: ORCID
Krzysztof Tajduś
ORCID: ORCID
Leszek Słowik
ORCID: ORCID

This page uses 'cookies'. Learn more