Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Point of present exploration was to figure out the anticorrosion activity of Acacia Cyanophylla (Saligna leaves) extract on the corrosion of mild steel in dilute sulfuric acid medium, using weight loss measurements and electrochemical impedance spectroscopy. The result of the study revealed that the extract act as a potent inhibitor on mild steel in acid medium. The increase in inhibitor concentration and immersion time showed a positive effect on inhibition efficiency. EIS exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The increase of phase shift (n) in presence of (ACLE) lower surface roughness. This change reveals the adsorption of the inhibitor compound on the steel surface. According to the results of weight loss measurements, the adsorption of the extract on the steel surface can be described by the Langmuir isotherm. The inhibition mechanism of (ACLE) molecules involves physical interaction between the inhibitor and metal surface. Additionally, Protective film formation against acid attack was confirmed by FT-IR and AFM techniques.
Go to article

Authors and Affiliations

M. Tezeghdenti
N. Etteyeb
L. Dhouibi
O. Kanoun
Download PDF Download RIS Download Bibtex

Abstract

This research was conducted to examine the corrosion behaviour of mild steel bar embedded in geopolymer paste based fly ash Class F during curing and non-curing process. The geopolymer paste was fabricated by blending in the fly ash with alkaline activators (NaOH solution with molarity of 12 M, 2.5 ratio of solution Na2SiO3/NaOH). The paste was produced in 50 mm × 50 mm × 50 mm mould where the mild steel bar of 100 mm (length) × 12 mm (diameter) was embedded at the center of geopolymer paste. This is to comprehend the corrosion behaviour of mild steel embedded in geopolymer paste with and without curing process. Process of curing is carried out for 24 hours at a temperature of 60°C in oven. While on the contrary, the non-curing process will only be leave at room temperature. Both samples were tested after 28 days of curing to determine the corrosion behaviour, phase analysis and morphology analysis. In accordance with the morphology analysis, it shows that the fly ash was totally reacted with alkaline solutions in curing geopolymer paste sample while the non-curing geopolymer paste has shown the unreacted fly ash with high number of pores. The phase analysis of mild steel embedded in this geopolymer paste during curing and without curing process has proven that the presence of new crystallographic peak which also known as passive layer occurred. The potential values result by OCP testing shows the curing sample has highest potential values as compared to the non-curing sample ones.
Go to article

Authors and Affiliations

Fatin Shahira Shaharudin
1
ORCID: ORCID
Farah Farhana Zainal
1
ORCID: ORCID
Nur Farhana Hayazi
1
ORCID: ORCID
Noraziana Parimin
1
ORCID: ORCID
Nur Izzati Muhammad Nadzri
1
ORCID: ORCID
Sri Hastuty
2
ORCID: ORCID
Andri Kusbiantoro
3
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering and Technology, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  2. Universitas Pertamina, Department of Mechanical Engineering, Jakarta 12220, Indonesia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

This work is an experimental study of thermo-mechanical surface hardening of mild steel with trace elements like titanium in negligible concentrations. This is somewhat an advanced technique used to harden steel surface which can be hardened in many typical ways. The concept is combining the thermal as well as mechanical technique to attain better results. It is quite obvious that mechanical refers to the compressive loading during machining and thermal refers to producing heat on the surface of work piece. The ideal conditions are when the heat produced is enough to achieve austenite and then subsequent quick cooling helps in the formation of martensite, which is metallurgically the most highly strong phase of steel, in terms of hardness. The coolant used preferably is the emulsified oil which flows on the surface during machining with variable rate of flow as the optimum effect is. This process hardens the surface of steel and increases its resistance against wear and abrasion. Preference is to achieve surface hardening using the conventional equipment so that operational cost is kept low and better results are attained. This technique has been quite successful in the laboratory. It can be termed as friction hardening. Some improvements in the process scheme and working environment can be made to get better results.
Go to article

Bibliography

[1] Muñoz, J.A., Avalos, M., Schell, N., Brokmeier, H.G. & Bolmaro, R.E. (2021). Comparison of a low carbon steel processed by Cold Rolling ( CR ) and Asymmetrical Rolling (ASR): Heterogeneity in strain path, texture, microstructure and mechanical properties. Journal of Manufacturing Processes. 64(February), 557-575. DOI: 10.1016/J.JMAPRO.2021.02.017.
[2] Hotz, H. & Kirsch, B. (2020). Influence of tool properties on thermomechanical load and surface morphology when cryogenically turning metastable austenitic steel AISI 347. Journal of Manufacturing Processes. 52(August 2020), 120-31. https://doi.org/10.1016/j.jmapro.2020.01.043.
[3] Burke, J.J., Weiss, V. (1974). Advances in deformation processing. New York: Plenum Press.
[4] Bernardo, L., Tressia, G., Masoumi, M., Mundim, E., Regattieri, C. & Sinatora, A. (2021). Roller crushers in iron mining, how does the degradation of Hadfield steel components occur ? Engineering Failure Analysis. 122(February), 105295, 1-18. DOI: 10.1016/j.engfailanal. 2021.105295.
[5] Fedorova, L.V., Fedorov, S.K., Serzhant, A.A., Golovin, V.V. & Systerov, S.V. (2017). Electromechanical surface hardening of tubing steels. Metal Science and Heat Treatment. 59(3-4), 173-175. DOI: 10.1007/s11041-017-0123-z.
[6] Vafaeian, S., Fattah-Alhosseini, A., Mazaheri, Y. & Keshavarz, M.K. (2016). On the study of tensile and strain hardening behavior of a thermomechanically treated ferritic stainless steel. Materials Science and Engineering A. 669, 480-489. http://dx.doi.org/10.1016/j.msea.2016.04.050.
[7] Shi, F., Yin, S., Pham, T.M., Tuladhar, R. & Hao, H. (2021). Pullout and flexural performance of silane groups and hydrophilic groups grafted polypropylene fibre reinforced UHPC. Construction and Building Materials. 277, 122335, 1-10. https://doi.org/10.1016/j.conbuildmat.2021.122335.
[8] Gao, J., Yu, M., Liao, D., Zhu, S., Zhu, Z. & Han, J. (2021). Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles. Materials & Design. 202, 109488, 1-10. https://doi.org/10.1016/j.matdes.2021.109488.
[9] Bedford, G.M., Vitanov, V.I. & Voutchkov, I.I. (2001). On the thermo-mechanical events during friction surfacing of high speed steels. Surface and Coatings Technology. 141, 34-39. https://doi.org/10.1016/S0257-8972(01)01129-X.
[10] Ahmed, W., Hegab, H., Mohany, A. & Kishawy, H. (2021). On machining hardened steel AISI 4140 with self-propelled rotary tools : experimental investigation and analysis. The International Journal of Advanced Manufacturing Technology. 11-12, 113, 3163–3176.
Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Poland

This page uses 'cookies'. Learn more