Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 341
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.

Go to article

Authors and Affiliations

P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

A method of using the electric charge in a capacitor was applied for the manufacture of thermocouple micro-joints. The motivation for the study was the need to produce a stable welded connection without affecting the geometry of the substrate, which was a thin sheet of Inconel 625 alloy (UNS designation N06625). Within the framework of the research work, a suitable workstation for micro-joints elaboration was built and welding experiments were performed using different electric charges. Studies carried out within the framework of the present work have shown that joints based on Inconel 625 alloy and platinum have the best application properties in the range of small-scale temperature measurements. They can be used, e.g., for monitoring the temperature distribution on the inner surfaces of electric motor casings. An undeniable advantage is in this case the high thermal resistance of both materials used to produce the joint, i.e. the Inconel 625 alloy and platinum. This allows them to be used at high temperatures under atmospheric conditions.

Go to article

Authors and Affiliations

G. Boczkal
K. Dadun
P. Palka
A. Hotlos
M. Janoska
Download PDF Download RIS Download Bibtex

Abstract

Metallic bearing alloys have different types, most of which are tin (Babbitt) or bronze based. Bronze bearings are used at heavy duty conditions. The goal of this research is an investigation on the effect of cooling rate and pouring temperature (two important factors in casting production) on the Brinell hardness and pin-on-disc wear resistance (two important properties in bearing applications) of bronze SAE660. The melt had prepared by induction furnace. Then, it had poured in sand mold in four different casting conditions, including pouring temperatures of 950 oC and 1200 oC, and cooling with water and air. Finally, the microstructure, hardness and wear resistance of the SAE660 had investigated. The results indicated that if the maximum hardness, along with the minimum weight loss due to wear (or maximum wear resistance) is required; the contents of intermetallic compounds, lead phase and the solid solution phase should be more. In this way, the samples which are cooled in air and poured at 950 oC have the high hardness and the lowest weight loss.
Go to article

Authors and Affiliations

S.E. Vahdat
S. Karimifer
Download PDF Download RIS Download Bibtex

Abstract

In this study, Strontium Bismuth Niobate (SrBi2-xTmxNb2O9 with 0 ≤ x ≤ 0.1) doped by Tm was synthesized using by the hydrothermal method. The microstructure and electrical properties were mainly investigated. XRD analysis showed a single-phase orthorhombic structure for Tm-doped SrBi2Nb2O9 samples. The crystallite size is anisotropic and the strain is apparently independent of Tm amount. Dielectric properties for doped SrBi2Nb2O9 with Tm3+ ion have the same trend discussed for the pure sample. FTIR resulats showed that NbO6 octahedral is formed, on one hand, and on the other hand, it shows that spectras for doped and undoped samples are nearly the same. The Cross-section of ceramics showed the plate-like morphology, also the distribution of the pore in ceramics are observed for all samples. Tm dopants produce only minor changes in the impendence parameter values at room temperature. The luminescent (PL) properties of Tm-doped SrBi2Nb2O9 ceramic powders were investigated. The optimum Tm3+ concentration for the maximum PL intensity was found to be at x = 0.075.
Go to article

Authors and Affiliations

Mohamed Afqir
1
ORCID: ORCID
Stevan Stojadinović
2
ORCID: ORCID
Mohamed Elaatmani
1
ORCID: ORCID
Abdelouahad Zegzouti
1
ORCID: ORCID
Nabiha Tahiri
1
Mohamed Daoud
1
ORCID: ORCID

  1. Université Cadi Ayyad, Faculté des Sciences Semlalia, Laboratoire des Sciences des Matériaux et Optimisation des Procédés, Marrakech, Morocco
  2. University of Belgrade, Faculty of Physics, Studentskitrg 12-16, Belgrade, Serbia
Download PDF Download RIS Download Bibtex

Abstract

The results presented in this article are part of the research on fatigue life of various foundry alloys carried out in recent years in the Lukasiewicz Research Network – Institute of Precision Mechanics and AGH University of Science and Technology, Faculty of Foundry Engineering. The article discusses the test results obtained for the EN-GJS-600-3 cast iron in an original modified low-cycle fatigue test (MLCF), which seems to be a beneficial research tool allowing its users to evaluate the mechanical properties of materials with microstructural heterogeneities under both static and dynamic loads. For a comprehensive analysis of the mechanical behaviour with a focus on fatigue life of alloys, an original modified low cycle fatigue method (MLCF) adapted to the actually available test machine was used. The results of metallographic examinations carried out by light microscopy were also presented. From the analysis of the results of the conducted mechanical tests and structural examinations it follows that the MLCF method is fully applicable in a quick and economically justified assessment of the quality of ductile iron after normalizing treatment.

Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The

samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic

microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study

included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained

alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.

Go to article

Authors and Affiliations

M. Kawalec
Download PDF Download RIS Download Bibtex

Abstract

The multiple direct remelting of composites based on the A359 alloy reinforced with 20% of Al2O3 particles was performed. The results of both gravity casting and squeeze casting were examined in terms of the obtained microstructure and mechanical characteristics. In microstructure examinations, the combinatorial method based on phase quanta theory was used. In mechanical tests, the modified low cycle fatigue method (MLCF) was applied. The effects obtained after both gravity casting and squeeze casting were compared. It was noted that both characteristics were gradually deteriorating up to the tenth remelting. The main cause was the occurrence of shrinkage porosity after the gravity casting. Much better results were obtained applying the squeeze casting process. The results of microstructure examinations and fatigue tests enabled drawing the conclusion that the A359 alloy reinforced with Al2O3 particles can confer a much better fatigue life behavior to the resulting composite than the A359 alloy without the reinforcement. At the same time, comparing these results with the results of the previous own research carried out on the composites based also on the A359 alloy but reinforced in the whole volume with SiC particles, it has been concluded that both types of the composites can be subjected to multiple remelting without any significant deterioration of the structural and mechanical characteristics. The concepts and advantages of using the combinatorial and MLCF methods in materials research were also presented
Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
J. Sobczak
A. Wojciechowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research results on the selection of parameters for the asymmetric rolling process of bimetallic plates 10CrMo9-10 + X2CrNiMo17-12-2. They consisted in determining the optimum parameters of the process, which would be ensured to obtain straight bands. Such deformation method introduces in the band the deformations resulting from shear stress, which affect changes in the microstructure. But their effect on the structure is more complicated than in the case of homogeneous materials. It has been shown that the introduction of asymmetric conditions into the rolling process results in greater grain refinement in the so-called hard layer. There was no negative effect on the structural changes in the soft layer observed.

Go to article

Authors and Affiliations

D. Rydz
ORCID: ORCID
B. Koczurkiewicz
G. Stradomski
T. Garstka
J. Wypart
Download PDF Download RIS Download Bibtex

Abstract

The phase transformation dynamic and electrical conductivity equations of the aged Cu-2.7Ti-2.5Ni-0.8V alloy were established in this work. The microstructure evolution and precipitated phases were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanical properties were tested using a hardness testing machine and universal test machine, and the electrical conductivity was measured by the eddy conductivity gauge. The results show that NiTi intermetallic compounds are formed during the solidification, and these phases such as Ni3Ti and NiV3 are precipitated after aging treatment. The fracture morphology displays that a large number of shallow and equiaxed dimples occur on the tensile fracture, indicating a typical ductile fracture. After aging treatment at 450°C for 240 min, the hardness, tensile strength, elongation and electrical conductivity of the Cu-2.7Ti-2.5Ni-0.8V alloy are 184 HV, 459 MPa, 6.3% and 28.72% IACS, respectively.
Go to article

Authors and Affiliations

Jia Liu
1 2
ORCID: ORCID
Jituo Liu
3
ORCID: ORCID
Xianhui Wang
3
ORCID: ORCID

  1. Xi’an Polytechnic University, School of Materials Science and Engineering, Xi’an 710048, P.R. China
  2. Xi’an University of Technology, School of Mechanical and Precision Instrument Engineering, Xi’an 710048, P. R. China
  3. Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic pulse echo technique was used to study cupric oxide (CuO) thin films. CuO thin films were prepared using sol gel technique. They were doped with Lithium (Li) (1%, 2% and 4%).

Thin films’ thickness (d) and band gap energy (Eg) were measured. In addition, elastic moduli (longitudinal (L), shear (G), bulk (K) and Young’s (E)) and Poisson’s ratio (v) were determined to estimate the microstructure properties of the prepared films.

The study ameliorated the used transducers to overcome their dead zone and beam scattering; wedges were developed. The results showed the effectiveness of these wedges. They enhanced transducers’ sensitivity by changing the dead zone, beam diameter, beam directivity and waves’ transmission.

Also, the study noted that Li doping caused the improvement of CuO thin films to be more useful in solar cell fabrication. Li-CuO thin films had narrower band gap. Thus, they acquired a high quantum yield for the excited carriers; also they gained more efficiency to absorb solar light.

Go to article

Authors and Affiliations

Barakat Mirham Abdallah Youssef
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Go to article

Authors and Affiliations

P.K. Chaurasia
C. Pandey
N. Saini M.M. Mahapatra Giri A.
Download PDF Download RIS Download Bibtex

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.

Go to article

Authors and Affiliations

J. Sobota
K. Rodak
M. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The article describes the impact of germanium on the course of surface phenomena in casting alloys of silver used in gold smithing. The aim of this works is to describe the assessment of resulting alloys, comparing the area of raw castings and the impact of the addition content of the alloy on the hardness of the samples. The evaluation also was subject to corrosion resistance of giving a comparison of their use in relations to traditional silver alloys.
Go to article

Authors and Affiliations

M. Jesiotr
W. Trzaskowski
D. Trochimiak
P. Nawrocki
K. Łukasik
D. Myszka
Download PDF Download RIS Download Bibtex

Abstract

The study includes the results of research conducted on selected lead-free binary solder alloys designed for operation at high temperatures.

The results of qualitative and quantitative metallographic examinations of SnZn alloys with various Zn content are presented. The

quantitative microstructure analysis was carried out using a combinatorial method based on phase quanta theory, per which any

microstructure can be treated as an array of elements disposed in the matrix material. Fatigue tests were also performed using the

capabilities of a modified version of the LCF method hereinafter referred to in short as MLCF, which is particularly useful in the

estimation of mechanical parameters when there are difficulties in obtaining many samples normally required for the LCF test. The fatigue

life of alloys was analyzed in the context of their microstructure. It has been shown that the mechanical properties are improved with the

Zn content increasing in the alloy. However, the best properties were obtained in the alloy with a chemical composition close to the

eutectic system, when the Zn-rich precipitates showed the most preferred morphological characteristics. At higher content of Zn, a strong

structural notch was formed in the alloy because of the formation in the microstructure of a large amount of the needle-like Zn-rich

precipitates deteriorating the mechanical characteristics. Thus, the results obtained during previous own studies, which in the field of

mechanical testing were based on static tensile test only, have been confirmed. It is interesting to note that during fatigue testing, both

significant strengthening and weakening of the examined material can be expected. The results of fatigue tests performed on SnZn alloys

have proved that in this case the material was softened.

Go to article

Authors and Affiliations

M. Maj
A. Wojciechowski
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

High-tin bronzes are used for church bells and concert bells (carillons). Therefore, beside their decorative value, they should also offer

other functional properties, including their permanence and good quality of sound. The latter is highly influenced by the structure of bell

material, i.e. mostly by the presence of internal porosity which interferes with vibration of the bell waist and rim, and therefore should be

eliminated. The presented investigations concerning the influence of tin content ranging from 20 to 24 wt% on mechanical properties of

high-tin bronzes allowed to prove the increase in hardness of these alloys with simultaneous decrease in the tensile and the impact

strengths (Rm and KV, respectively) for the increased tin content. Fractures of examined specimens, their porosity and microstructures

were also assessed to explain the observed regularities. A reason of the change in the values of mechanical properties was revealed to be

the change in the shape of α-phase crystals from dendritic to acicular one, and generation of grain structure related to the increased Sn

content in the alloy.

Go to article

Authors and Affiliations

M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

In Poland, researchers have a very strong interest in archaeometallurgy, which, as presented in classical works, focuses on dating artefacts

from the prehistoric and early medieval periods in the form of cast iron and copper castings. This study, extending the current knowledge,

presents the results of a microstructure investigation into the findings from the Modern era dating back to the late Middle Ages. The

investigated material was an object in the form of a heavy solid copper block weighing several kilograms that was excavated by a team of

Polish archaeologists working under the direction of Ms Iwona Młodkowska-Przepiórowska during works on the marketplace in the city of

Czestochowa during the summer of 2009. Pre-dating of the material indicates the period of the seventeenth century AD.

The solid copper block was delivered in the form of a part shaped like a bell, named later in this work as a “kettlebell”. To determine the

microstructure, the structural components, chemical composition, and homogeneity, as well as additives and impurities, investigations

were carried out using light microscopy, scanning electron microscopy including analysis of the chemical composition performed in

micro-areas, and qualitative X-ray phase analysis in order to investigate the phase composition.

Interpretation of the analytical results of the material’s microstructure will also help modify and/or develop new methodological

assumptions to investigate further archaeometallurgical exhibits, throwing new light on and expanding the area of knowledge of the use

and processing of seventeenth-century metallic materials.

Go to article

Authors and Affiliations

Ł. Wierzbicki
K. Głowik-Łazarczyk
J. Konieczny
K. Labisz
J. Ćwiek
Download PDF Download RIS Download Bibtex

Abstract

In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI). The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM). Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.
Go to article

Authors and Affiliations

M. Górny
M. Kawalec
Download PDF Download RIS Download Bibtex

Abstract

Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have

been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was

replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000o

C, i.e. at a much lower temperature than the

currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having

a temperature of 1650°C for 30 seconds.

Characteristic of the filters’ properties before and after the filtration trial were done. It was found, that the surface reaction of the filter

walls with molten metal, which resulted in local changes of the microstructure and phase composition, did not affect on expected filter

lifetime and filtration did not cause secondary contamination of cast steel.

Go to article

Authors and Affiliations

B. Lipowska
P. Wieliczko
M. Asłanowicz
J. Witek
T. Wala
A. Karwiński
A. Ościłowski
Download PDF Download RIS Download Bibtex

Abstract

The results of studies presented in this article are an example of the research activity of the authors related to lead-free alloys. The studies covered binary SnZn90 and SnZn95 lead-free alloys, including their microstructure and complex mechanical characteristics. The microstructure was examined by both light microscopy (LM) and scanning electron microscopy (SEM). The identification of alloy chemical composition in micro-areas was performed by SEM/EDS method. As regards light microscopy, the assessment was of both qualitative and quantitative character. The determination of the geometrical parameters of microstructure was based on an original combinatorial method using phase quantum theory. Comprehensive characterization of mechanical behavior with a focus on fatigue life of alloys was performed by means of the original modified low cycle fatigue method (MLCF) adapted to the actually available test machine. The article discusses the fatigue life of binary SnZn90 and SnZn95 alloys in terms of their microstructure. Additionally, the benefits resulting from the use of the combinatorial method in microstructure examinations and MLCF test in the quick estimation of several mechanical parameters have been underlined.

Go to article

Authors and Affiliations

K. Pietrzak
A. Klasik
M. Maj
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

Lead-free alloys containing various amounts of zinc (4.5%, 9%, 13%) and constant copper addition (1%) were discussed. The results of

microstructure examinations carried out by light microscopy (qualitative and quantitative) and by SEM were presented. In the light

microscopy, a combinatorial method was used for the quantitative evaluation of microstructure. In general, this method is based on the

phase quanta theory according to which every microstructure can be treated as an arrangement of phases/structural components in the

matrix material. Based on this method, selected geometrical parameters of the alloy microstructure were determined. SEM examinations

were based on chemical analyses carried out in microregions by EDS technique. The aim of the analyses was to identify the intermetallic

phases/compounds occurring in the examined alloys. In fatigue testing, a modified low cycle fatigue test method (MLCF) was used. Its

undeniable advantage is the fact that each time, using one sample only, several mechanical parameters can be estimated. As a result of

structure examinations, the effect of alloying elements on the formation of intermetallic phases and compounds identified in the examined

lead-free alloys was determined. In turn, the results of mechanical tests showed the effect of intermetallic phases identified in the

examined alloys on their fatigue life. Some concepts and advantages of the use of the combinatorial and MLCF methods in materials

research were also presented.

Go to article

Authors and Affiliations

M. Maj
A. Wojciechowski
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the studies of ternary SnZn9Al1.5 lead-free alloy from the viewpoint of its mechanical behavior as well as microstructure examined by the light and scanning electron microscopy. The authors focused their attention specifically on the fatigue parameters determined by the original modified low-cycle fatigue method (MLCF), which in a quick and economically justified way allows determination of a number of mechanical parameters based on the measurement data coming from one test sample only. The effect of the addition of 1.5% Al to the binary eutectic SnZn9 alloy on its microstructure and the obtained level of mechanical parameters was analyzed. The phases and intermetallic compounds occurring in the alloy were identified based on the chemical analysis carried out in micro-areas by the SEM/EDS technique. It was shown that the addition of 1.5% Al to the binary eutectic SnZn9 alloy resulted in a more favorable microstructure and consequently had a positive effect on the mechanical parameters of the alloy. Based on the conducted research, it was recommended to use a combinatorial method based on the phase quanta theory to quickly evaluate the microstructure and the original MLCF method to determine a number of mechanical parameters.
Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

The present paper is a presentation of results of a study on morphology, chemical composition, material properties (HVIT, HIT, EIT), and nanoindentation elastic and plastic work for carbide precipitates in chromium cast iron containing 24% Cr. It has been found that the carbides differ in chemical composition, as well as in morphology and values characterizing their material properties. The carbides containing the most chromium which had the shape of thick and long needles were characterized with highest values of the analyzed material properties.

Go to article

Authors and Affiliations

A.W. Orłowicz
M. Mróz
M. Tupaj
A. Trytek
M. Jacek
M. Radoń
Download PDF Download RIS Download Bibtex

Abstract

This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength) and grain size are shifting with an increasing cooling rate.

Go to article

Authors and Affiliations

M. Król
L.A. Dobrzański

This page uses 'cookies'. Learn more