Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present a new approach to the problem of silicon integrated spiral inductors modeling. First, an overview of models and modeling techniques is presented. Based on 3D simulations and published measurement results, a list of physical phenomena to be taken into account in the model is created and based on it, the spiral inductor modeling by frequency sampling method is presented. To verify the proposed method a test circuit, containing 6 spiral inductors was designed and integrated in a silicon technology. The parameters of the spiral inductors from the test circuit were next measured and compared with simulations results. The comparison for one of those six spiral inductors is presented in the article.

Go to article

Authors and Affiliations

M. Kałuża
A. Napieralski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.

Go to article

Authors and Affiliations

Kaustubh Bhattacharyya
Rupanda Thangjam
Sivaranjan Goswami
Kumaresh Sarmah
Sunandan Baruah
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a series of designed microstrip antennas with different gain and width radiation characteristics and intended for use in Wi-Fi systems. These antennas in a multilayer system were analyzed with the use of computer programs, and then the parameters and characteristics of these antennas were measured. At the same time, to check the correctness of work, additional measurements of the temperature of the radiators were used with a thermal imaging camera. The obtained results were compared with the results of calculations and measurements. They show high compliance with both calculations and measurements. At the same time, thermovision measurements show the weaknesses of the designed power lines.
Go to article

Bibliography

[1] Sharma R., Mithilesh Kumar, Dual band planar microstrip antenna for 2.5/5.8 GHz wireless cellular applications, International Journal on Communications Antenna and Propagation, vol. 3, no. 2, pp. 90–96 (2013).
[2] Nelson I.O., Ademola A.Y., Patch antenna array feed design for a dish antenna, International Journal on Communications Antenna and Propagation, vol. 3, no. 5, pp. 261–266 (2013).
[3] Maloney J.G., Smith G.S., Scott W.R., Accurate computation of radiation from simple antenas using finite – difference time domain method, IEEE Trans. Antennas and Propagation, vol. 38 (1990).
[4] Ghaderi B., Parhizgar N., Resource allocation in MIMO systems specific to radio communication, Archives of Electrical Engineering, vol. 68, no. 1, pp. 91–100 (2019).
[5] Parhizgar N., A new mutual coupling compensation method for receiving antenna array-based DOA estimation, Archives of Electrical Engineering, vol. 67, no. 2 (2018).
[6] Bielecki Z.,Rogalski A., Optical signals detection, Scientific and Technical Publishing, Warsaw(2001).
[7] MinkinaW., Thermovision measurements – instruments and methods, Publishing House of the Czestochowa University of Technology, Czestochowa (2004).
[8] Balanis C.A., Antenna theory, New Jersey, John Wiley & Sons, Inc. (2005).
[9] Fang D.G., Antenna theory and microstrip antennas, CRC Press (2010).
[10] Lo Y.T., Lee S.W., Antenna Handbook, Antenna Theory, vol. 2 (1988).
[11] Taflowe A., Computational electrodynamics Finite – Difference Time Domain, Artech House, Boston (1995).
[12] Wnuk M., Analysis of radiating structures located on a multilayer dielectric, Warsaw, MUT (1999).
[13] Długosz T., Mutual influence of the TEM I transmission line of the tested object, Ph.D. dissertation, Dept. Elect. Eng., Wrocław (2007).
[14] Keshavarz S., Nozhat N., Dual-band Wilkinson power divider based on composite right/left-handed transmission lines, 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) 2016, DOI: 10.1109/ECTICon.2016.7561268.
[15] Trikas P.A., Balanis C.A., Finite – difference time – domain technique for radiation by horn antennas, IEEE Antennas and Propagation Society International Symposium Digest, vol. 3 (1991).
[16] Gizem Toroglu, Levent Sevgi, Finite-difference time-domain (FDTD) matlab codes for first- and second-order em differential equations, IEEE Antennas and Propagation Magazine, vol. 56, no. 2, pp. 221–239 (2014), DOI: 10.1109/MAP.2014.6837093

Go to article

Authors and Affiliations

Marian Wnuk
1

  1. Military University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Wearable antennas are becoming increasingly popular as a result of their wide range of applications, including communication, health parameter monitoring, and so on. If the wearable antenna is built of textile material, it is highly comfortable to wear and has numerous benefits, such as light weight, compact size, and low cost. A 1.3 GHz microstrip antenna made from jeans substrate is presented in this work. For antenna conducting patch and ground plane copper material is used. The electromagnetic properties of the jean’s substrate are dielectric constant ℇr = 1.7 and loss tangent tan ẟ = 0.01. In this work the main purpose or application of this antenna is to observe three levels of glucose, i.e., hypoglycemia, hyperglycemia, and normal glucose. The antenna is placed over the arm in the first scenario, while the finger is placed over the antenna patch in the second case. When the glucose concentration in the blood varies, the blood properties change, and the antenna frequency shifts as a result. [That] This frequency shift is used to find out the three glucose levels. The advantage of jeans substrate is that you can wear this antenna very easily over your arm. The antenna is designed using HFSS software and tested using an arm phantom and a finger phantom designed in HFSS.
Go to article

Authors and Affiliations

Asha Ghodake
1
Balaji Hogade
1

  1. Terna Engineering College, University of Mumbai, India
Download PDF Download RIS Download Bibtex

Abstract

Over the last twenty years, there has been a growing interest in the design of tunable devices at microwave frequencies by us- ing liquid crystals technology. In particular, the use of liquid crystals with high dielectric anisotropy allows manufacturing voltage-controlled devices to operate in a wide frequency range. In this work the frequency response of a liquid crystal band-pass filter with dual-mode microstrip structure has been studied in depth by using a simulation software tool. A reshap- ing of a conventional dual-mode square patch resonator bandpass filter with a square notch, studied in the literature, has been proposed with the goal of improving the filter performance. The main features achieved are a significant increase in the return loss of the filter and a narrowing of a 3-dB bandwidth. Specifically, a reduction in the filter bandwidth from 800 MHz to 600 MHz, which leads to a return loss increase from 6 dB to 12.5 dB, has been achieved. The filter centre frequency can be tuned from 4.54 GHz to 5.19 GHz.

Go to article

Authors and Affiliations

J. Torrecilla
C. Marcos
V. Urruchi
J.M. Sánchez-Pena
O. Chojnowska
Download PDF Download RIS Download Bibtex

Abstract

Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.
Go to article

Authors and Affiliations

Imelda Uli Vistalina Simanjuntak
1
Sulistyaningsih
2
Heryanto
3
Dian Widi Astuti
1

  1. Universitas Mercu Buana, Indonesia
  2. Badan Riset dan Inovasi Nasional, Indonesia
  3. Institut Teknologi PLN, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

For high speed downlinking of payload data from small satellites, a new 4×4 aperture coupled microstrip patch array antenna has been presented. The antenna is designed for the Ku band and a peak gain of 18.0 dBi is achieved within the impedance bandwidth from 11.75 GHz to 12.75 GHz. Wide bandwidth is achieved as the patch elements are excited through E-shaped slots having asymmetric side lengths and widths. Each square patch element of the array with truncated corners and appropriately placed slots generates right hand circularly polarized (RHCP) radiation with very high crosspolarization discrimination. A corporate feed network consisting of T-junctions and quarter-wave impedance transformers is developed to feed the array elements from a single coaxial port of 50 Ω. To improve the radiation from the patches and waveguiding in the feed network, two types of Rogers substrates with different dielectric constant and thickness are considered. Our proposed microstrip patch array antenna of size 7.8 cm × 6.4 cm × 0.3 cm can perform efficiently with a downlink data rate as high as 4.6 Gbps for small satellites.
Go to article

Authors and Affiliations

Kajol Chandra Paul
1
Anis Ahmed
2

  1. Dept. of Electrical and Electronic Engineering, Jatiya Kabi Kazi Nazrul Islam University, Mymensingh, Bangladesh
  2. Dept. of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

5G is a fifth-generation wireless technology that enables extremely fast data transfers and massive connection capacity. Existing Mobile health technology requires more reliable connection power and data transfer rates. The purpose of this research is to design, analyse, and compare the performance of a bio-inspired lotus-shaped microstrip patch antenna array with two to three radiating elements. The proposed antenna utilizes proximity coupled indirect microstrip transmission line feeding technique operating in the 24 GHz-30 GHz frequency band. The results indicate that performance continues to improve as the number of radiating elements increases. Moreover, each radiating element is loaded with complementary and non-complementary split-ring resonators (SRRs). The performance of the proposed microstrip antenna array is then analysed and compared with and without split-ring resonators. The findings validate that the proposed bio-inspired metamaterial-based microstrip patch array antenna is more reliable and performs better than an antenna without SRRs.
Go to article

Authors and Affiliations

John Colaco
1
Jillian Cotta
1

  1. Goa College of Engineering, Farmagudi, Ponda, Goa, India
Download PDF Download RIS Download Bibtex

Abstract

An intelligent security model for the big data environment is presented in this paper. The proposed security framework is data sensitive in nature and the level of security offered is defined on the basis of the data secrecy standard. The application area preferred in this work is the healthcare sector where the amount of data generated through the digitization and aggregation of medical equipment’s readings and reports is huge. The handling and processing of this great amount of data has posed a serious challenge to the researchers. The analytical outcomes of the study of this data are further used for the advancement of the medical prognostics and diagnostics. Security and privacy of this data is also a very important aspect in healthcare sector and has been incorporated in the healthcare act of many countries. However, the security level implemented conventionally is of same level to the complete data which not a smart strategy considering the varying level of sensitivity of data. It is inefficient for the data of high sensitivity and redundant for the data of low sensitivity. An intelligent data sensitive security framework is therefore proposed in this paper which provides the security level best suited for the data of given sensitivity. Fuzzy logic decision making technique is used in this work to determine the security level for a respective sensitivity level. Various patient attributes are used to take the intelligent decision about the security level through fuzzy inference system. The effectiveness and the efficacy of the proposed work is verified through the experimental study.
Go to article

Authors and Affiliations

Somya Dubey
1
Dhanraj Verma
1

  1. Dr. A. P. J. Abdul Kalam University, Indore, India
Download PDF Download RIS Download Bibtex

Abstract

A quasi-Yagi microstrip patch antenna with four directors and truncated ground plane has been designed and fabricated to have an ultra-wide bandwidth, high gain, low return loss and better directivity with center frequency at 3.40 GHz. After optimization, the proposed antenna yields an ultra-wide bandwidth of 1.20 GHz with lower and upper cutoff frequencies at 3.12 GHz and 4.32 GHz, respectively. High gain of 5.25 dB, return loss of -28 dB and directivity of 6.28 dB are obtained at resonance frequency of 3.40 GHz. The measured results of fabricated antenna have shown excellent agreement with the simulation results providing bandwidth of 1.34 GHz with lower and upper cutoff frequencies at 3.04 GHz and 4.38 GHz, respectively. The antenna gain of 5.33 dB, return loss of -44 dB are obtained at resonance frequency of 3.36 GHz. The dimension of the antenna is only of 65 mm x 45 mm ensuring compact in size.
Go to article

Authors and Affiliations

Hasanur Rahman Chowdhury
1 2
Sakhawat Hussain
1

  1. Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka-1000, Bangladesh
  2. Department of Electrical & Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This page uses 'cookies'. Learn more