Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an advanced Internet of Things (IoT) system for measuring, monitoring, and recording some power quality (PQ) parameters. The proposed system is designed and developed for both hardware and software. For the hardware unit, three PZEM-004T modules with non-invasive current transformer (CT) sensors are used to measure the PQ parameters and an Arduino WeMos D1 R1 ESP8266 microcontroller is used to receive data from the sensors and send this data to the server via the internet. For the software unit, an algorithm using Matlab software is developed to send measurement data to the ThingSpeak cloud. The proposed system can monitor and analyse the PQ parameters including frequency, root mean square (RMS) voltage, RMS current, active power, and the power factor of a low-voltage load in real-time. These PQ parameters can be stored on the ThingSpeak cloud during the monitoring period; hence the standard deviation in statistics of the voltage and frequency is applied to analyse and evaluate PQ at the monitoring point. The experimental tests are carried out on low-voltage networks 380/220 V. The obtained results show that the proposed system can be usefully applied for monitoring and analysing chosen PQ parameters in micro-grid solutions.
Go to article

Bibliography

[1] Luo A., Xu Q., Ma F., Chen., Overview of power quality analysis and control technology for the smart grid, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 1, pp. 1–9 (2016).
[2] Szulborski M., Kolimas L., Łapczynski S., Szczęśniak P., Single phase UPS systems loaded with nonlinear circuits: analysis of topology in the context of electric power quality, Archives of Electrical Engineering, vol. 68, no. 4, pp. 787–802 (2019).
[3] Wenge C., Guo H., Roehrig C., Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system, Archives of Electrical Engineering, vol. 66, no. 4, pp. 801–814 (2017).
[4] Mendes T.M., Faria E.R.S., Perle L.A.V., Ribeiro E.G., Ferreira D.D., Barbosa B.H.G., Duque C.A., Detection of Power Quality Disturbance using a Multidimensional Approach in an Embedded System, IEEE Latin America Transactions, vol. 17, no. 7, pp. 1102–1108 (2019).
[5] Khoa N.M., Dai L.V., Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods, Energies, vol. 13, no. 14, 3623 (2020).
[6] Bagdadee A.H., Zhang L., A Review of the Smart Grid Concept for Electrical Power System, International Journal of Energy Optimization and Engineering, vol. 8, no. 4 (2019).
[7] Alavi S.A., Rahimian A., Mehran K., Ardestani J.M., An IoT-based data collection platform for situational awareness-centric microgrids, in 2018 IEEE Canadian conference on electrical and computer engineering, Quebec City, Canada, pp. 13–16 (2018).
[8] Bagdadee A.H., Zhang L., Remus Md.S.H., A Brief Review of the IoT-Based Energy Management System in the Smart Industry, Advances in Intelligent Systems and Computing, Springer (2020).
[9] Bagdadee A.H., Hoque Md.Z., Zhang L., IoT Based Wireless Sensor Network for Power Quality Control in Smart Grid, Procedia Computer Science, Procedia Computer Science, Elsevier, vol. 167, pp. 1148–1160 (2020).
[10] Henschke M.,Wei X., Zhang X., Data Visualization forWireless Sensor Networks Using Things Board, in 29th Wireless and Optical Communications Conference, Newark, NJ, USA (2020).
[11] Benzi F., Anglani N., Bassi E., Frosini L., Electricity Smart Meters Interfacing the Households, IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4487–4494 (2011).
[12] Chooruang K., Meekul K., Design of an IoT Energy Monitoring System, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand (2018).
[13] Luan H., Leng J., Design of energy monitoring system based on IoT, in 2016 Chinese Control and Decision Conference, Yinchuan, China (2016).
[14] Ku T.Y., Park W.K., Choi H., IoT Energy Management Platform for Micro-grid, in 2017 IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada (2017).
[15] Marinakis V., Doukas H., An Advanced IoT-based System for Intelligent Energy Management in Buildings, Sensors, vol. 18, no. 1 (2018), DOI: 10.3390/s18020610.
[16] Kulkarni N., Lalitha S.V.N.L., Deokar S.A., Real time control and monitoring of grid power systems using cloud computing, International Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 2088–8708 (2019).
[17] Priyadharshini S.G., Subramani C., Preetha Roselyn J., An IoT based smart metering development for energy management system, International Journal of Electrical and Computer Engineering, vol. 9, no. 4, pp. 3041–3050 (2019).
[18] Khoa N.M., Dai L.V., Tung D.D., Toan N.A., An IoT-Based Power Control and Monitoring System for Low-Voltage Distribution Networks, TNU Journal of Science and Technology, vol. 225, no. 13, pp. 51–58 (2020).
[19] Yang T.Y., Yang C.S., Sung T.W., An Intelligent Energy Management Scheme with Monitoring and Scheduling Approach for IoT Applications in Smart Home, in 2015 Third International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, pp. 18–20 (2015).
[20] Dai L.V., Khoa N.M., Quyen L.C., An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration, Complexity, vol. 2020, p. 8037837 (2020).
[21] Mnati M.J., Bossche A.V., Chisab R.F., Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application, Sensors, vol. 872, no. 16 (2017), DOI: 10.3390/s17040872.
[22] Han D.M., Lim J.H., Design and implementation of smart home energy management systems based on ZigBee, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1417–1425 (2010).
[23] Velazquez L.M., Troncoso R.J.R., Ruiz G.H., Sotelo D.M., Rios R.A.O., Smart sensor network for power quality monitoring in electrical installations, Measurement, vol. 103, pp. 133–142 (2017).
[24] Nallagownden P., Ramasamy H., Development of real-time industrial energy monitoring system with PQ analysis based on IoT, in 4th IET Clean Energy and Technology Conference, Kuala Lumpur, Malaysia (2016).
[25] Shamshiri M., Gan C.K., Baharin K.A., Azman M.A.M., IoT-based electricity energy monitoring system at Universiti Teknikal Malaysia Melaka, Bulletin of Electrical Engineering and Informatics, vol. 8, no. 2, pp. 683–689 (2019).
[26] Mroczka J., Szmajda M., Górecki K., Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform – Tools for Power Quality Monitoring, Metrology and Measurement Systems, vol. 17, no. 3, pp. 383–396 (2010).
[27] Ardeleanu A.S., Ramos P.M., Real Time PC Implementation of Power Quality Monitoring System Based on Multiharmonic Least-Squares Fitting, Metrology and Measurement Systems, vol. 18, no. 4, pp. 543–554 (2011).
[28] Khan M.A., Hayes B., PTP-based time synchronisation of smart meter data for state estimation in power distribution networks, IET Smart Grid (2020).
[29] Khwanrit R., Kittipiyakuly S., Kudtongngamz J., Fujita H., Accuracy Comparison of Present Lowcost Current Sensors for Building Energy Monitoring, 2018 International Conference on Embedded Systems and Intelligent Technology and International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand (2018).
[30] Olehs, Arduino communication library for peacefair pzem-004t energy monitor, https://github.com/ olehs/PZEM004T, accessed 2016.
[31] Legarreta A.E., Figueroa J.H., Bortolin J.A., An IEC 61000-4-30 class a – Power quality monitor: Development and performance analysis, in 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal (2011).
[32] Markiewicz H., Klajn A., Voltage Disturbances: Standard EN 50160 – Voltage Characteristics in Public Distribution Systems, IEE Endorsed Provider (2004). [33] Hassani H., Ghodsi M., Howell G., A note on standard deviation and standard error, International Journal of the IMA: Teaching Mathematics and Its Applications, vol. 29, no. 2, pp. 108–112 (2010).
Go to article

Authors and Affiliations

Ngo Minh Khoa
1
ORCID: ORCID
Le Van Dai
2
Doan Duc Tung
1
ORCID: ORCID
Nguyen An Toan
1
ORCID: ORCID

  1. Faculty of Engineering and Technology, Quy Nhon University, Vietnam
  2. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Self-healing grids are one of the most developing concepts applied in electrical engineering. Each restoration strategy requires advanced algorithms responsible for the creation of local power systems. Multi-agent automation solutions dedicated for smart grids are mostly based on Prim’s algorithm. Graph theory in that field also leaves many problems unsolved. This paper is focused on a variation of Prim’s algorithm utility for a multi-sourced power system topology. The logic described in the paper is a novel concept combined with a proposal of a multi-parametrized weight calculation formula representing transmission features of energy delivered to loads present in a considered grid. The weight is expressed as the combination of three elements: real power, reactive power, and real power losses. The proposal of a novel algorithm was verified in a simulation model of a power system. The new restoration logic was compared with the proposal of the strategy presented in other recently published articles. The novel concept of restoration strategy dedicated to multi-sourced power systems was verified positively by simulations. The proposed solution proved its usefulness and applicability.
Go to article

Bibliography

  1.  S.A. Arefifar, Y.A.-R.I. Mohamed, and T.H.M. EL-Fouly, “Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192‒4200, 2013, doi: 10.1109/tpwrs.2013.2259852.
  2.  J. Quiros-Tortos and V. Terzija, “A Graph Theory Based New Approach for Power System Restoration,” in Proc. 2013 IEEE Grenoble PowerTech (POWERTECH), 2013, doi: 10.1109/ptc.2013.6652108.
  3.  T.D. Sudhakar and K.N. Srinivs, “Power System Reconfiguration Based on Prim’s Algorithm,” in Proc. 2011 1st International Conference on Electrical Energy Systems (ICEES), 2011, doi: 10.1109/ICEES.2011.5725295.
  4.  M.M. Ibrahim, H.A. Mostafa, M.M.A. Salama, R. El-Shatshat, and K.B. Shaban, “A Graph-theoretic Service Restoration Algorithm for Power Dystribution Systems,” in Proc. 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018, doi: 10.1109/itce.2018.8316647.
  5.  A. Golshani, W. Sun, and K. Sun, “Advanced power system partitioning method for fast and reliable restoration: toward a self-healing grid,” IET Gener. Transmiss. Distrib., vol. 12, no,1, pp.45‒52, 2018, doi: 10.1049/iet-gtd.2016.1797.
  6.  J. Quiros-Tortos, M. Panteli, P. Wall, and V. Tereija, “Sectionalising methodology for paraller system restoration based on graph theory,” IET Gener. Transmiss. Distrib., vol. 9, no. 11, pp. 1216‒1225, 2015, doi: 10.1049/iet-gtd.2014.0727.
  7.  M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Połecki, and Ł. Rokitnicki, “Effective approach to distributed optimal operation control in rural low voltage microgrids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 661‒678, 2020, doi: 10.24425/bpasts.2020.134178.
  8.  S. Sannigrahi, S.R. Ghatak, and P. Acharjee, “Multi-objective optimisation-based active distribution system planning with reconfiguration, intermittent RES and DSTATCOM,” IET Renew. Power Gener., vol. 13, no. 13, pp. 2418‒2429, 2019, doi: 10.1049/iet-rpg.2018.6060.
  9.  A. Bonfilio, M. Invernizzi, A. Labella, and R. Procopio, “Design and Implementation of a Variable Synthetic Inertia Controller for Wind Turbine Generators,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 754‒764, 2019, doi: 10.1109/tpwrs.2018.2865958.
  10.  F. Vazinram, R. Effatnejad, M. Hedayati, and P. Hajihosseini, “Decentralised self-healing model for gas and electricity distribution network,” IET Gener. Transmiss. Distrib., vol. 13, no.  19, pp. 4451‒4463, October 2019, doi: 10.1049/iet-gtd.2019.0416.
  11.  M. Eriksson, M. Armendariz, O. Vasilenko, A. Saleem, and L. Nordström, “Multi-Agent Based Distribution Automation Solution for Self-Healing Grids,” IEEE Trans. Ind. Electron., vol.  62, no. 4, pp. 2620‒2628, 2015, doi: 10.1109/tie.2014.2387098.
  12.  J. Li, Reconfiguration of power network based on graph-theoretic algorithms, Graduate Theses and Dissertations, Iowa State University, 2010, pp. 10‒35, doi: 10.31274/etd-180810-2753.
  13.  T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Section 23.2: The algorithms of Kruscal and Prim” in Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 631‒638.
  14.  J. Ansari, A. Gholami, and A. Kazemi, “Multi-agent systems for reactive power control in smart grids,” Int. J. Electr. Power Energy Syst., vol. 83, pp. 411‒425, 2016, doi: 10.1016/j.ijepes.2016.04.010.
  15.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 769‒776, 2020, doi: 10.24425/bpasts.2020.134170.
  16.  Q. Wang, S. Tao, X. Du, C. Zhong, and Y. Tang, “Coordinating Control Strategy for Multi Micro Energy Systems Within Distribution Grid Considering Dynamic Characteristics and Contradictory Interests,” IEEE Access, vol. 7, pp. 139548‒139559, 2019, doi: 10.1109/ access.2019.2943926.
  17.  Z. Wang and J. Wang, “Self-healing resilient distribution systems based on sectionalization into microgrids,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3139‒3149, 2015, doi: 10.1109/tpwrs.2015.2389753.
  18.  W. Bąchorek and M. Benesz, “Analysis of sectionizing switch placement in medium voltage distribution networks in the aspect of improving the continuity of power supply,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 3, pp. 459‒466, 2020, doi: 10.24425/bpasts.2020.133377.
  19.  R.J. Wilson, Introduction to Graph Theory, London, Pearson Education Limited, 2010, pp. 8‒79.
  20.  J.A. Bondy and U.S.R. Murty, Graph theory with applications. London, Citeseer, 1976, pp. 10‒55.
  21.  B.S. Torres, L.R. Ferreira, and A.R. Aoki, “Distributed Intelligent System for Self-Healing in Smart Grids,” IEEE Trans. Power Del., vol. 33, no. 5, pp. 2394‒2403, 2018, doi: 10.1109/tpwrd.2018.2845695.
  22.  X. Yang, Y. Zhang, H. He, S. Ren, and G. Weng, “Real-Time Demand Side Management for a Microgrid Considering Uncertainties,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3401‒3414, 2019, doi: 10.1109/tsg.2018.2825388.
  23.  A. Younesi, H. Shayeghi, A. Safari, and P. Siano, “Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation,” Energy, vol. 207, 118220, 2020, doi: 10.1016/j.energy.2020.118220.
  24.  Y. Shen, Y. Chen, J. Zhang, Z. Sang, and Q. Zhou, “Self-Healing Evaluation of Smart Distribution Network Based on Uncertainty Theory,” IEEE Access, vol. 7, pp. 140022‒140029, 2019, doi: 10.1109/access.2019.2939537.
  25.  K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game- Theoretic Approach,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1264‒1275, 2020, doi: 10.1109/tsg.2019.2934830.
  26.  A. Chris and V. Koivunen, “Coalitional Game-Based Cost Optimalization of Energy Portfolio in Smart Grid Communities,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1960‒1970, 2019, doi: 10.1109/TSG.2017.2784902.
  27.  M. Zadsar, M.R. Haghifam, and S.M.M. Larimi, “Approach for self-healing resilient operation of active distribution network with microgrid,” IET Gener. Transmiss. Distrib., vol. 11, no. 18, pp. 4633‒4643, 2017, doi: 10.1049/iet-gtd.2016.1783.
  28.  W. Jiang, C. Yang, Z. Liu, M. Liang, P. Li, and G. Zhou, “A Hierarchical Control Structure of Distributed Energy Storage System in DC Micro-Grid,” IEEE Access, vol. 7, pp. 128787‒128795, 2019, doi: 10.1109/access.2019.2939626.
  29.  K. Karimizadeh, S. Soleymani, and F. Faghihi, “Optimal placement of DG units for the enhancement of MG networks performance using coalition game theory,” IET Gener. Transmiss. Distrib., vol. 14, no. 5, pp. 853‒862, 2020, doi: 10.1049/iet-gtd.2019.0070.
  30.  J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stabilty and Control. Haboken, New Jersey, John Wiley & Sons, Ltd., 2008, pp. 89‒99.
  31.  P. Li, J. Ji, H. Ji, G. Song, Ch. Wang, and J. Wu, “Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks,” Energy, vol. 195, 116968, 2020, doi: 10.1016/j.energy.2020.116968.
  32.  S. Pochpor and H.M. Suryawanshi, “Design and Analysis of Triplen Controlled Resonant Converter for Renewable Sources to Interface DC Micro Grid,” IEEE Access, vol. 7, pp. 15330‒15339, 2019, doi: 10.1109/access.2019.2891165.
  33.  S. Heinen and M.J. O’Malley, “Complementarities of Supply and Demand Sides in Integrated Energy Systems,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1156‒1165, 2019, doi: 10.1109/tsg.2018.2871393.
  34.  F. Liberati, A. Di Giorgio, A. Giuseppi, A. Pietrabissa, E. Habib, and L. Martirano, “Joint Model Predictive Control of Electric and Heating Resources in a Smart Building,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 7015‒7027, 2019, doi: 10.1109/TIA.2019.2932954.
  35.  A. Mojallal, S. Lotfifard, and S.M. Azimi, “A Nonlinear Supplementary Controller for Transient Response Improvement of Distributed Generations in Micro-Grids,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 489‒499, 2020, doi: 10.1109/tste.2019.2895961.
  36.  S. Gude and Ch-Ch Chu, “Single Phase Enhanced Phase-Locked Loops Based on Multiple Delayed Signal Cancellation Filters for Micro- Grid Applications,” IEEE Trans. Ind. Electron, vol. 55, no.  6, pp. 7122‒7133, 2019, doi: 10.1109/TIA.2019.2915563.
Go to article

Authors and Affiliations

Artur Łukaszewski
ORCID: ORCID
Łukasz Nogal
ORCID: ORCID

This page uses 'cookies'. Learn more