Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On the basis of surface pressure analyses covering the area of south-west Atlantic, maps of monthly mean pressure fields for the period from March to December 1979 were drawn. In order to accentuate the dynamics of pressure processes, maps of standard deviation as well as of the skewness coefficient of the values forming the pressure field were also prepared. Apart from this, the variation of pressure in the particular points of the field in the months considered, was discussed. Attention was drawn to the distinct quasi-periodicity, dependent on location of the given point.

Go to article

Authors and Affiliations

Waldemar Stepko
Danuta Wielbińska
Download PDF Download RIS Download Bibtex

Abstract

Results from measurements and basic observations of meteorological elements carried out in 1978, at Arctowski Station situated on King George Island (South Shetland Islands) are presented.

Go to article

Authors and Affiliations

Lucjan Nowosielski
Download PDF Download RIS Download Bibtex

Abstract

General meteorological conditions in the Admiralty Bay in 1978 did not deviate from those of many years. The data for 1978 were used to analyse the co-occurrence of four most perceptible meteorological parameters: temperature, air humidity, wind speed and precipitation. In summer these elements occurred simultaneously only in 1 — 2 intervals of values, in winter their occurrence within individual intervals was less numerous, but covered more of them.

Go to article

Authors and Affiliations

Jolanta Kratke
Danuta Wielbińska
Download PDF Download RIS Download Bibtex

Abstract

In the summers of 1978 and 1979 meteorological observations and measurements were carried out in South Spitsbergen. These investigations gave a characteristic of the summer meteorological conditions in the forefield of the Gås Glacier. Some regularities were found to exist in the distribution of air temperature and other meteorological elements.

Go to article

Authors and Affiliations

Andrzej Kamiński
Download PDF Download RIS Download Bibtex

Abstract

This paper gives the daily values of chosen meteorological elements measured at the Polar Station of the Polish Academy of Sciences at Hornsund, during the Vlth Expedition of the Polish Academy of Sciences to Spitsbergen. The tables give average daily values of air temperature, relative humidity, atmospheric pressure, cloud amount and wind speed, daily amounts of precipitation and bright sunshine, extreme temperature values, maximum instantaneous wind speed and snow cover thickness for all the days in the period under study.

Go to article

Authors and Affiliations

Zbigniew Pietroń
Michał Ziemiański
Download PDF Download RIS Download Bibtex

Abstract

An analysis of observation material concerning fog occurrence in Hornsund collected by seven whole-year expeditions of the Polish Academy of Sciences' to Spitsbergen in 1957—58, 1978—1980, 1981—1985 is presented. The frequencies of fog occurrence in Hornsund during a year and in particular months are compared with respective frequencies calculated for Norwegian stations in Svalbard. Data from the Poland territory are also quoted. The dependences of the fog frequency in Hornsund on air masses advection, circulation type, direction and speed of local winds, time of observation and temperature are shortly analyzed. The periods with long-lasting fogs (exampled by synoptic situations that favor them) are discussed more precisely. A short description of main meteorologie processes favoring the occurrence of fog in this part of Spitsbergen is presented.

Go to article

Authors and Affiliations

Zbigniew Pietroń
Download PDF Download RIS Download Bibtex

Abstract

This article aims to analyse the influence of weather types on meteorological

conditions in Petuniabukta (Svalbard) during July and August of 2016. The paper analyses

the daily courses of air temperature and humidity at four measurement points located on

the west bank of Petuniabukta near Adam Mickiewicz University Polar Station during

two different types of weather conditions: (i) cloudy and windy, (ii) calm and clear.

These weather types, distinguished on the basis of wind speed and cloudiness, allowed

for the creation of composite maps of the synoptic situation (SLP and geopotential

height of 500 hPa distribution) and its anomalies. In the study area, the air temperature

range in windy and cloudy weather conditions was larger (-10°C to 15°C) than that in

sunny and calm weather (0°C to 15°C), which contrasts the range of humidity values.

The diurnal cycle of meteorological elements in sunny and calm days is strongly related

to the sun elevation angle. In the above-mentioned weather types, the air temperature

was higher by several degrees (median 5°C to 8°C) than on windy and cloudy days

(median about 0°C to 6°C) at each measurement point. On days with sunny and calm

weather, a smaller vertical temperature gradient of air is observed (for sunny and calm

days 0.63°C and for windy weather 0.8°C).

Go to article

Authors and Affiliations

Sebastian Kendzierski
Leszek Kolendowicz
Marek Półrolniczak
Download PDF Download RIS Download Bibtex

Abstract

The Earth’s atmosphere contains various dust particles that scatter and absorb solar radiation. Their amount and type affect the temperature on Earth – but how do we know what’s up there?
Go to article

Authors and Affiliations

Iwona Stachlewska
1

  1. Faculty of Physics, University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

This study gives an analysis of the variation of main meteorological parameters on the Station Arctowski in the time from December 1979 through March 1980 — the summer season of the IV Antarctic Expedition of the Polish Academy of Sciences. Characteristics of wind speed and direction, of air temperature, atmospheric pressure, precipitation, cloudiness, soil temperature at the station and surface water temperatures of the Admiralty Bay are based on the standard synoptic observations.

Go to article

Authors and Affiliations

Barbara Cygan
Download PDF Download RIS Download Bibtex

Abstract

The relevance of this study is due to the fact that the presented object of scientific work, namely 6–10 kV overhead lines, plays an important role in the process of providing electrical energy to consumers of the oil industry. The aim of the work is a detailed analysis of the reliability of overhead lines which are exploited in the difficult natural and climatic conditions of the Caspian region and Mangyshlak and the introduction of effective modeling tools for overhead lines. The methods used include the analytical method, theoretical method, logical analysis method, functional method, statistical method, synthesis method and others. In the course of the study, the natural and climatic conditions of the Atyrau region and their differences were noted and the reliability of the power supply systems was also analyzed. The most damaged elements of industrial power supply systems and their part of failures were identified in comparison with other elements of the power supply system. It was determined that the electrical power sector plays a crucial role in the oil and gas sector by determining the solution of the production tasks of all departments which have a significant impact on the formation of economic indicators. The practical value of the revealed results is that they will help to highlight the problems of operational reliability of the 6–10 kV overhead lines, considering the various natural and climatic factors, which in turn will help to change the power supply scheme and increase the resistance to external influences.
Go to article

Authors and Affiliations

Vladimir Yashkov
1
ORCID: ORCID
Akmaral Konarbaeva
1
ORCID: ORCID
Nasikhan Dzhumamukhambetov
2
ORCID: ORCID
Esengeldy Arystanaliev
1
ORCID: ORCID
Dyussembek Kulzhanov
1
ORCID: ORCID

  1. Institute of Petrochemical Engineering and Ecology named after N.K. Nadirov, Atyrau Oil and Gas University named after S. Utebayev, Republic of Kazakhstan
  2. Department of Electric Power Supply, S. Seifullin Kazakh Agrotechnical University, Republic of Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Meteorological and biometeorological conditions during the warm seasons (June– September) of 1979–2008 are described for the Hornsund area, Spitsbergen. The measure− ments were taken at four sites: at Hornsund, at the Hans Glacier (at its equilibrium line and in the firn section) and at the summit of Fugleberget. The variation of meteorological and biometeorological conditions was analysed in relation to altitude, distance from the sea and the ground type. In warm seasons, the air temperature at Hornsund was 2.2°C higher on aver− age than at the Hans Glacier (central section) and by 2.8°C than at the Hans Glacier (firn sec− tion) and at Fugleberget. The average wind speed recorded at Hornsund was higher (0.6ms−1) than at the Hans Glacier and lower (0.9ms−1) than at Fugleberget. Four biometeorological in− dices were used: wind chill index (WCI), predicted insulation of clothing (Iclp), cooling power (H) and subjective temperature index (STI). The strongest thermal stimuli were ob− served on the Hans Glacier and in the upper mountain areas. The study has found a consider− able degree of spatial variation between the meteorological elements investigated and the biometeorological indices in the Hornsund area. The impact of atmospheric circulation on meteorological elements and biometeorological indices is also presented. The mildest bio− meteorological conditions of the warm season found at Hornsund were associated with air masses arriving from the southwest and west.

Go to article

Authors and Affiliations

Andrzej Araźny
Krzysztof Migała
ORCID: ORCID
Sebastian Sikora
Tomasz Budzik
Download PDF Download RIS Download Bibtex

Abstract

This paper describes the spatial differentiation of topoclimatic conditions in the vicinity of the Arctowski Station (King George Island, Antarctica) during the summer season of the 2006/2007. The measurement stations were located in the Point Thomas oasis as well as on the Ecology Glacier and Warszawa Icefield. The paper analyses meteorological elements such as air temperature, air humidity (eight sites) and wind direction and velocity (three sites). Significant topoclimatic diversities resulting from denivelation, exposure, ground properties and local air circulation were recorded in the study area.

Go to article

Authors and Affiliations

Marek Kejna
Download PDF Download RIS Download Bibtex

Abstract

On the basis of the results of direct measurements, the conduction properties of the yearly behaviour of the halt flux conducted in the tundra soil (S) are determined. In general, the cooling period of the soil profile lasted from August to January, with highest intensity in October (S = —4.8 Wm-2). A rapid intensification of the heat exchange in the soil occurred in July (S = 7.4 Wm-2 ) . The 24-hour values of S were found to vary greatly (from 19 Wm-2 to 32 Wm-2). For chosen days, relationships were determined among the particular elements of the heat balance of the active layer.

Go to article

Authors and Affiliations

Bronisław Głowicki
Download PDF Download RIS Download Bibtex

Abstract

On the basis of a year-long series of actinometric measurements performed in the vicinity of Polish Polar Station at Hornsund, this paper presents the characteristic of the value of solar radiation incoming at the active surface, of absorbed and net radiation. The maximum intensity of the direct solar radiation was 822 Wm-2, the annual sum total of total radiation was 2611 MJm-2, whereas the mean yearly albedo was 59%. The zero-crossing of the 24-hour sums of the net radiation towards negative values occurred at the turn of September and October.

Go to article

Authors and Affiliations

Bronisław Głowicki
Download PDF Download RIS Download Bibtex

Abstract

Meteorological parameters which are most significant for ozone forecasting were chosen in the multiple regression analysis for the daily time series. Then correlations between the variables we~e investigated, both for the daily and temporary values. There was confirmed a strong relationship between atmospheric conditions and ozone concentrations as well as autocorrelations of the temporary time series of ozone from different monitoring stations. Diversification of autocorrelation values arises probably from different receptor locations which was confirmed by the principal component analysis. There were also shown dependences between the ozone time series from different monitoring stations. Strong space-time relationships of ozone concentrations and meteorological conditions in the Black Triangle region can be used in modeling and forecasting of ozone episodes.
Go to article

Authors and Affiliations

Artur Gzella
Jerzy Zwoździak
Download PDF Download RIS Download Bibtex

Abstract

Water vapour radiometers (WVR) provide information about temperature and humidity in the troposphere, with high temporal resolution when compared to the radiosonde (RS) observations. This technique can provide an additional reference data source for the zenith tropospheric delay (ZTD) estimated with the use of the Global Navigation Satellite System (GNSS). In this work, the accuracy of two newly installed radiometers was examined by comparison with RS observations, in terms of temperature (T), absolute humidity (AH), and relative humidity (RH), as well as for the ZTD. The impact of cloud covering and heavy precipitation events on the quality of WVR measurements was investigated. Also, the WVR data were compared to the GNSS ZTD estimates. The experiment was performed for 17 months during 2020 and 2021. The results show agreement between RS and WVR data at the level of 2◦C in T and 1 gm-3 in AH, whereas for RH larger discrepancies were noticed (standard deviation equal to 21%). Heavy precipitation increases WVR measurement errors of all meteorological parameters. In terms of ZTD, the comparison of WVR and RS techniques results in bias equal to –0.4 m and a standard deviation of 7.4 mm. The largest discrepancies of ZTD were noticed during the summer period. The comparison between the GNSS and WVR gives similar results as the comparison between the GNSS and RS (standard deviation 7.0–9.0 mm).
Go to article

Bibliography

Bauer, H.-S.,Wulfmeyer, V., Schwitalla, T. et al. (2011). Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A: Dynamic Meteorology and Oceanography, 63, 263–282. DOI: 10.1111/j.1600-0870.2010.00489.x.
Bengtsson, L. (2010). The global atmospheric water cycle. Environ. Res. Lett., 5, 202. DOI: 10.1088/1748-9326/5/2/025202.
Bennitt, G.V. and Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models. Mon. Weather Rev., 140, 2706–2719. DOI: 10.1175/MWR-D-11-00156.1.
Bevis, M., Businger, S., Chiswell, T.A. et al. (1994). Gps meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. Climatol., 33 (3), 379–386. DOI: 10.1175/1520-0450(1994)0330379:GMMZWD>2.0.CO;2.
Bock, O., Bosser, P., Pacione, R. et al. (2016). A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period. Q. J. R. Meteorol. Soc., 142, 56–71. DOI: 10.1002/qj.2701.
Böhm, J. and Schuh, H. (2013). Atmospheric effects in space geodesy. Springer. DOI: 10.1007/978-3-642-36932-2S.
Boniface, K., Ducrocq, V., Jaubert, G. et al. (2009). Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Ann. Geophys., 27, 2739–2753. DOI: 10.5194/angeo-27-2739-2009.
Brenot, H., Rohm, W., Kaˇcmaˇrík, M. et al. (2020). Cross-Comparison and methodological improvement in GPS tomography. Remote Sens., 12(1), 30. DOI: 10.3390/rs12010030.
Buehler, S., Östman, S., Melsheimer, C. et al. (2012). A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chem. Phys., 12, 10925–10943. DOI: 10.1.1.662.8109.
Churnside, J.H., Stermitz, T.A., and Schroeder, J.A. (1994). Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data. J. Atmos. Ocean Technol., 11(1).
Crewell, S., and Lohnert, U. (2007). Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans.Geosci.Remote Sens., 45(7), 2195–2201. DOI: 10.1109/TGRS.2006.888434.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS Software Version 5.2. User manual, Astronomical Institute. Universtiy of Bern: Bern Open Publishing.
Dai, A., Wang, J., Ware, R.H. et al. (2002). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Ress: Atmos., 107, ACL-11. DOI: 10.1029/2001JD000642.
Dymarska, N., Rohm, W., Sierny, J. et al. (2017). An assessment of the quality of near-real time GNSS observations as a potential data source for meteorology. Meteorol. Hydro. Water Managem. Res. Operational Applications, 5, 3–13. DOI: 10.26491/mhwm/65146.
Emardson, T.R., Johansson J.M., and Elgered G. (2000). The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans. Geosci. Remote Sens., 38, 324–329. DOI: 10.1109/36.823927.
Ferraro, R.R., Kusselson, S.J., and Colton, M. (1998). An introduction to passive microwave remote sensing and its applications to meteorological analysis and forecasting. Polarization, 1(2). DOI: 10.1.1.662.8109.
Ferreira, J.A., Liberato, M.L., and Ramos, A.M. (2016). On the relationship between atmospheric water vapour transport and extra-tropical cyclones development. Phys. Chemis. Earth, Parts A/B/C, 94, 56–65. DOI: 10.1016/j.pce.2016.01.001.
Frate, F.D. and Schiavon, G. (1998). A combined natural orthogonal functions/neural network technique for the radiometric estimation of atmospheric profiles. Radio Sci., 33, 405–410. DOI: 10.1029/97RS02219.
Gradinarsky, L., Johansson, J., Bouma, H. et al. (2002). Climate monitoring using GPS. Phys. Chemis. Earth, Parts A/B/C, 27, 335–340. DOI: 10.1016/S1474-7065(02)00009-8.
Guerova, G., Brockmann, E., Schubiger, F. et al. (2005). An integrated assessment of measured and modeled integrated water vapor in Switzerland for the period 2001-03. J. Appl. Meteorol. Climatol., 44, 1033–1044. DOI: 10.1175/JAM2255.1.
Guerova, G., Jones, J., Douša, J. et al. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech., 9, 5385–5406. DOI: 10.5194/amt-9-5385-2016.
Haase, J., Ge, M., Vedel, H. et al. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteorol., 42(11), 1547–1568. DOI: 10.1175/1520-0450(2003)0421547:AAVOGT>2.0.CO;2.
Hanna, N., Trzcina, E., Möller, G. et al. (2019). Assimilation of GNSS tomography products into WRF using radio occultation data assimilation operator. Atmos. Meas.Tech.s Discuss., 1–32. DOI: 10.5194/amt-12-4829-2019.
Ingram,W. (2010). A very simple model for the water vapour feedback on climate change. Quarterly J. R. Meteorol. Soc., 136, 30–40. DOI: 10.1002/qj.546.
Jacob, D. (2001). The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 523–527. DOI: 10.1016/S1464-1895(01)00094-1.
Jung, T., Ruprecht, E., and Wagner, F. (1998). Determination of cloud liquid water path over the oceans from Special Sensor Microwave/Imager (SSM/I) data using neural networks. J. Appl. Meteorol., 37, 832–844. DOI: 10.1175/1520-0450(1998)0370832:DOCLWP>2.0.CO;2.
Karabati´c, A., Weber, R., and Haiden, T. (2011). Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv. Space Res., 47, 1691–1703. DOI: 10.1016/j.asr.2010.10.028.
Kleijer, F. (2004). Troposphere modeling and filtering for precise GPS leveling. Ph.D. thesis. TU Delft: Delft University of Technology. DOI: 10.26491/mhwm/65146.
Kryza, M., Werner, M., Wałszek, K. et al. (2013). Application and evaluation of the WRF model for high-resolution forecasting of rainfall-a case study of SW Poland. Meteorologische Zeitschrift, 22, 595–601. DOI: 10.1127/0941-2948/2013/0444.
Liang, H., Cao, Y., Wan, X. et al. (2015). Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn., 6, 135–142. DOI: 10.1016/J.GEOG.2015.03.001.
Liou, Y.-A., Teng, Y.-T., Van Hove, T. et al. (2001). Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol., 40, 5–15. DOI: 10.1175/1520-0450(2001)0400005:COPWOI>2.0.CO;2.
Liu, J., Sun, Z., Liang, H. et al. (2005). Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res. Atmos., 110. DOI: 10.1029/2004JD005715.
Löhnert, U., Turner, D.D., and Crewell, S. (2009). Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions. J. Appl. Meteorol. Climatol., 48(5), 1017–1032. DOI: 10.1175/2008JAMC2060.1.
Löhnert, U., and Maier, O. (2012). Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5(5), 1121–1134. DOI: 10.5194/amt-5-1121-2012.
Lu, C., Li, X., Li, Z. et al. (2016). GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. J. Geophys. Res. Atmos., 121, 912–930. DOI: 10.1002/2015JD024255.
Mahfouf, J.-F., Ahmed, F., Moll, P. et al. (2015). Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment. Tellus A: Dyn. Meteorol. Oceanogr., 67, 26106. DOI: 10.3402/tellusa.v67.26106.
Massaro, G., Stiperski, I., Pospichal, B. et al. (2015). Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8(8), 3355–3367. DOI: 10.5194/amt-8-3355-2015.
Miloshevich, L.M., Paukkunen, A., Vömel, H. et al. (2004). Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Tech., 21, 1305–1327. DOI: 10.1175/1520-0426(2004)0211305:DAVOAT>2.0.CO;2.
Möller, G., Wittmann, C., Yan, X. et al. (2015). 3D ground based GNSS atmospheric tomography. Final report, FFG project GNSS-ATom (ID:840098).
Morland, J., Collaud Coen, M., Hocke, K. et al. (2009). Tropospheric water vapour above Switzerland over the last 12 years. Atmos. Chemis. Phys., 9, 5975–5988, 2009. DOI: 10.5194/acp-9-5975-2009.
Ning, T. and Elgered, G. (2021). High temporal resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations. Atmos. Meas. Tech. Discuss., 1–21. DOI: 10.5194/amt-14-5593-2021.
Offiler, D. (2010). EIG EUMETNET GNSSWater Vapour Programme (E-GVAP-II) Product Requirements Document. Tech. rep. EIG EUMETNET.
Ohtani, R. and Naito, I. (2000). Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. Atmos., 105, 26917–26929. DOI: 10.1029/2000JD900362.
Pacione, R., Pace, B., Vedel, H. et al. (2011). Combination methods of tropospheric time series. Adv. Space Res. DOI: 10.1016/j.asr.2010.07.021.
Pacione, R., Araszkiewicz, A., Brockmann, E. et al. (2017). EPN-Repro2: A reference GNSS tropospheric data set over Europe. Atmos. Meas. Tech., 10, 1689–1705. DOI: 10.5194/amt-10-1689-2017.
Rocken, C., Van Hove, T., Johnson et al. (1995). GPS/STORM–GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 468–478. DOI: 10.1175/1520-0426(1995)0120468:GSOAWV>2.0.CO;2.
Rohm, W., Guzikowski, J., Wilgan, K. et al. (2019). 4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF. Atmos. Meas.Tech., 12, 345–361. DOI: 10.5194/amt-12-345-2019.
RPG: Operation Principles and Software Description for RPG standard single polarization radiometers (G5series), Radiometer Physics GmbH,Werner-von-Siemens-Str. 4, 53340 Meckenheim, Germany, 12 edn., https://www.radiometer-physics.de, 2017.
Sá, A., Rohm, W., Fernandes, R.M. et al. (2021). Approach to leveraging real-time GNSS tomography usage. J. Geod., 95(1), 1–21. DOI: 10.1007/s00190-020-01464-7.
Shangguan, M., Heise, S., Bender, M. et al. (2015). Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode. Annal. Geophys., 33, 55–61. DOI: 10.5194/angeo-33-55-2015.
Skamarock, W.C., Klemp, J.B., Dudhia, J. et al. (2008). A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR. DOI: 10.5065/D68S4MVH.
Solheim, F., Godwin, J.R., Westwater, E. et al. (1998). Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci., 33, 393–404. DOI: 10.1029/97RS03656.
Thayer, G.D. (1974). An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807. DOI: 10.1029/RS009i010p00803.
Tonda´s, D., Kapłon, J., and Rohm, W. (2020). Ultra-fast near real-time estimation of troposphere parameters and coordinates from GPS data. Measurement, 107849. DOI: 10.1016/j.measurement.2020.107849.
Trzcina, E. and Rohm,W. (2019). Estimation of 3D wet refractivity by tomography, combining GNSS and NWP data: First results from assimilation of wet refractivity into NWP. Q. J. R. Meteorol. Soc., 145, 1034–1051. DOI: 10.1002/qj.3475.
Trzcina, E., Hanna, N., Kryza, M. et al. (2020). TOMOREF Operator for Assimilation of GNSS TomographyWet Refractivity Fields in WRF DA System. J. Geophys. Res. Atmos., 125, e2020JD032, 451. DOI: 10.1029/2020JD032451.
Ulaby, F., Moore, R., and Fung, A. (1986). An improved equation for the radio refractive index of air. Artech House, I–II. DOI: 10.1029/RS009i010p00803.
Van Baelen, J., Aubagnac, J.-P., and Dabas, A. (2005). Comparison of near–real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Tech., 22, 201–210. DOI: 10.1175/JTECH-1697.1.
Van Baelen, J., Reverdy, M., Tridon, F. et al. (2011). On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q. J. R. Meteorol. Soc., 137, 204–223. DOI: 10.1002/qj.785.
Vey, S., Dietrich, R., Rülke, A. et al. (2010). Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J. Clim., 23, 1675–1695. DOI: 10.1175/2009JCLI2787.1.
Wang, J. and Liu, Z. (2019). Improving GNSS PPP accuracy through WVR PWV augmentation. J. Geod., 93, 1685–1705. DOI: 10.1007/s00190-019-01278-2.
Wilgan, K., Rohm, W., and Bosy, J. (2015). Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model. Atmos. Res., 156, 29–42. DOI: 10.1016/j.atmosres.2014.12.011.
Zhao, Q., Yao, Y., Yao, W. et al. (2019a). GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J. Atmos. and Sol.-Terr. Phys., 182, 85–92. DOI: 10.1016/j.jastp.2018.11.004.
Zhao, Y., Xu, X., Zhao, T. et al. (2019b). Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. Intern. J. Climat., 39, 3121–3133. DOI: 10.1002/joc.6000.
Zus, F., Wickert, J., Bauer, H.S. et al. (2011). Experiments of GPS slant path data assimilation with an advanced MM5 4DVAR system. Meteorologische Zeitschrift, 173–184. DOI: 10.1127/0941-2948/2011/0232.
Go to article

Authors and Affiliations

Estera Trzcina
1
Damian Tondaś
1
ORCID: ORCID
Witold Rohm
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

High concentrations of nitrogen dioxide in the air, particularly in heavily urbanized areas, have an adverse eff ect on many aspects of residents’ health. A method is proposed for modelling daily average, minimal and maximal atmospheric NO 2 concentrations in a conurbation, using two types of modelling: multiple linear regression (LR) an advanced data mining technique – Random Forest (RF). It was shown that Random Forest technique can be successfully applied to predict daily NO 2 concentration based on data from 2015–2017 years and gives better fit than linear models. The best results were obtained for predicting daily average NO 2 values with R 2 =0.69 and RMSE=7.47 μg/m . The cost of receiving an explicit, interpretable function is a much worse fit (R 2 from 0.32 to 0.57). Verification of models on independent material from the first half of 2018 showed the correctness of the models with the mean average percentage error equal to 16.5% for RF and 28% for LR modelling daily average concentration. The most important factors were wind conditions and traffic flow. In prediction of maximal daily concentration, air temperature and air humidity take on greater importance. Prevailing westerly and south-westerly winds in Wrocław effectively implement the idea of ventilating the city within the studied intersection. Summarizing: when modeling natural phenomena, a compromise should be sought between the accuracy of the model and its interpretability.
Go to article

Authors and Affiliations

Joanna Amelia Kamińska
1
Tomasz Turek
1

  1. Wrocław University of Environmental and Life Sciences
Download PDF Download RIS Download Bibtex

Abstract

The drought ranked first in terms the natural hazard characteristics and impacts followed by tropical cyclones, regional floods, earthquakes, and volcanoes. Drought monitoring is an important aspect of drought risk management and the assessment of drought is usually done through using various drought indices. The western region in Algeria is the most affected by the drought since the middle of the 70s.The current research focuses on the analysis and comparison of four meteorological drought indices (standardized precipitation index – SPI, percent of normal index – PN, decile index – DI, and rainfall anomaly index – RAI) in the Tafna basin for different time scales (annual, seasonal, and monthly) during 1979–2011. The results showed that the SPI and DI have similar frequencies for dry and wet categories. The RAI and PN were able to detect more drought categories. Meanwhile, all indices have strong positive correlations between each other, especially with Spearman correlation tests (0.99; 1.0), the meteorological drought indices almost showed consistent and similar results in the study area. It was determined in 1982 as the driest year and 2008 as the wettest year in the period of the study. The analysis of the trend was based on the test of Mann– Kendall (MK), a positive trend of the indices were detected on a monthly scale, this increasing of indices trend represent the increasing of the wet categories which explains the increasing trend of the rainfall in the last 2000s. These results overview of the understanding of drought trends in the region is crucial for making strategies and assist in decision making for water resources management and reducing vulnerability to drought.
Go to article

Authors and Affiliations

Hanane Bougara
1 2
ORCID: ORCID
Kamila Baba Hamed
1
Christian Borgemeister
3
ORCID: ORCID
Bernhard Tischbein
3
ORCID: ORCID
Navneet Kumar
3
ORCID: ORCID

  1. University of Abou Bekr Belkaid, Faculty of Technology, Tlemcen BP 230 - 13000, Chetouane Tlemcen, Algeria
  2. Pan African University Institute of Water and Energy Sciences (PAUWES), Tlemcen, Algeria
  3. University of Bonn, Center for Development Research (ZEF), Bonn, Germany
Download PDF Download RIS Download Bibtex

Abstract

The contribution summarises the Beja lexicon connected with natural phenomena, including astronomical, temporal, and geographical terminology. Every lexeme is documented in available sources and etymologized in areal or genealogical perspectives. In the case of borrowings, the ambition is to trace primary donor-languages, usually Arabic or Ethio-Semitic, sometimes Nilo-Saharan. The inherited lexemes are identified, if no convincing donors were determined, while there are promising comparanda in other Cushitic, Omotic or other Afroasiatic branches.
Go to article

Authors and Affiliations

Václav Blažek
1
ORCID: ORCID

  1. Masaryk University, Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Ground temperature variations have been analysed to the depth of 160 cm, with respect to meteorological elements and short-wave radiation balance. The database of the ground temperature covers a thirteen month-long period (May 1992 – June 1993), which included both the seasons of complete freezing of the ground and thaw. Special attention has been given to the development of perennial permafrost and its spatial distribution. In summer, the depth of thawing ground varied in different types of ground — at the Polish Polar Station, this was ca. 130 cm. The ground froze completely in the first week of October. Its thawing started in June. The snow cover restrained heat penetration in the ground, which hindered the ground thawing process. Cross-correlation shows a significant influence of the radiation balance (K*) on the values of near-surface ground temperatures (r2 = 0.62 for summer).

Go to article

Authors and Affiliations

Jan Leszkiewicz
Zbigniew Caputa
Download PDF Download RIS Download Bibtex

Abstract

Investigations of the snow cover at the end of the winter 1990/1991 were carried out in several areas in West Spitsbergen, namely, Lomonosovfonna, Kongsvegen, Fridtjovbreen, Amundsenisen and that north of the Hornsund Fjord. The physical properties and chemical nature of precipitation and the snow cover were determined. The studies revealed high variation in the precipitation and the thickness of the snow cover: 317 mm w.e. (water equivalent) in the Hornsund area, 659 mm w.e. at Lomonosovfonna, 1076 mm w.e. at Fridtjovbreen and 1716 mm w.e. at Amundsenisen. The salt loads deposited in the snow cover in different parts of West Spitsbergen were also calculated (2.8 t/km2 at Lomonosovfonna, 15.8 t/km2 at Kongsvegen and 43.2 t/km2 at Amundsenisen). An intensive process of demineralisation during the conversion of snow to firn was revealed, reaching as much as 90% during the first summer. An attempt to determine the anthropogenic element content using the pH values for the precipitation and snow cover was also made. A distinct correlation between the physico-chemical characteristic of snow layer and falling snow was found. On the basis of the quality of the precipitation and snow cover, West Spitsbergen has been classified into following provinces: (1) northern situated within Arctic High (Lomonosovfonna and Kongsvegen), (2) southern ndergoing mainly moving air masses from the Arctic High and Greenland Low (Amundsenisen and Hornsund region).

Go to article

Authors and Affiliations

Piotr Głowacki
Marian Pulina
Download PDF Download RIS Download Bibtex

Abstract

At present. when high particulate matter (PM) concentrations in ambient air cause thousands o Ipremature deaths in Europe and global climate change is becoming the most critical issue in environmental protection, the state-of-the-science air quality and climate models constitute an essential research as well as decision support tools. Recently the great progress has been achieved in this research area. The present paper presents the goals and tools lor Air Quality (AQ) Modeling, and gives overview of' current challenges. including the meteurological. chemistry and climate modeling. The main emphasis is given to the regulatory and the Eulerian grid models. the latter arc currently operating as so called off-line or on-line modeling systems. The issues conncctccl with model implementation and validation is presented as well. finally, the conclusions arc drawn and rccornmcndations lor further development and integration ofAQ and climate modeling in Poland arc presented.
Go to article

Authors and Affiliations

Katarzyna Juda-Rezler

This page uses 'cookies'. Learn more