Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the investigation associated with the determination of mercury content in Polish hard coal and lignite samples. Those coals are major fuels used for electricity generation in Poland. The results indicated that the average content of mercury in the coal samples was roughly about 100 ng/g. Apart from the determination of the mercury contents a detailed ultimate and proximate analysis of the coal samples was also carried out. The relationships between the mercury content and ash, as well as fixed carbon, volatile matter, sulfur, and high heating value of the coal samples were also established. Furthermore, the effect of coal enrichment was also investigated, and it was found that the enrichment process enabled the removal of up to 75% of the coal mercury from the samples.

Go to article

Authors and Affiliations

Michał Wichliński
Rafał Kobyłecki
Zbigniew Bis
Download PDF Download RIS Download Bibtex

Abstract

Mercury is a highly toxic metal which naturally occurs in the Earth’s crust and has adverse effects on both humans and the environment. The use of fossil fuels for electricity generation and specific industries sources of mercury emissions. These emissions depend on the mercury content in fuels of different types, the process gas temperature and composition, the implementation of air pollutant control devices (APCDs), etc. The APCDs partially capture and/or oxidize mercury in flue gas as a side benefit. In some cases, the emissions are reduced by mercury-dedicated or mixed methods. Mercury transformation in process gases is generally based on a chain of homogeneous and/or heterogeneous reactions. The theory of gaseous mercury/solid phase reactions and its mechanisms is widely studied in the literature. In this review, we focused on the theoretical and practical studies of these mechanisms, including mercury oxidization and capture from specified laboratory simulated or process gases and industries. We summarized research on various reactions – mostly of a chemical type – between different forms of mercury derived from process gases, and solids, including particles of different kinds (fly ash, adsorbents or catalysts). We additionally reviewed the literature on the interactions between mercury and sulfur compounds in the simulated and process gases.
Go to article

Authors and Affiliations

Yinyou Deng
1
ORCID: ORCID
Mariusz Macherzyński
2
ORCID: ORCID

  1. AGH Doctoral School, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow
  2. AGH University of Science and Technology, Department of Coal Chemistry and Environmental Sciences, Faculty of Fuel and Energy, Al. Mickiewicza 30, 30-059, Krakow
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to identify concentration levels of different chemical forms of mercury (TGM, TPM) in the ambient air in selected areas of the Silesian Region, characterized by low and high mercury emission. Based on the obtained data TGM and TPM concentration levels were determined. The project also focused on determination of dry and wet deposition of mercury compounds. Data concerning TGM and TPM flux rates in the ambient air and data on mercury deposition were used to determine a deposition coefficient. The coefficient was calculated as a share of mercury deposition on the land surface (dry and wet) to the amount of this contaminant transported with loads of air in the form of TGM and TPM in a given measurement station. At both monitoring stations the deposition coefficient did not exceed 0.2 %. The idea of calculating the deposition coefficient based on the analysis of TGM and TPM flux rate is a new solution. The proposed deposition coefficient allows to quantify information on a selected contaminant concentration and its potential impact resulting from deposition. Further studies on the deposition coefficient may contribute to the development of methods for estimating the impact of contaminants contained in the ambient air on other environmental components based on the analyses of the contaminant flux rate.

Go to article

Authors and Affiliations

Bartosz Nowak
Katarzyna Korszun-Kłak
Urszula Zielonka
Download PDF Download RIS Download Bibtex

Abstract

The presented studies were focused on evaluating the utility of one of sequential extraction methods for evaluating the bioavailability of mercury in soils polluted by this element. Soil samples collected from horizons 0-20 cm and 20-80 cm were subject to analysis of the basic physical and chemical properties of soils. Moreover, the total content of mercury was determined and sequential extraction of mercury was conducted using a modified five-stage Wallschläger method. The analyses show that the studied soils are characterized by a variable mercury content, the highest in the surface soil horizons. Sequential extraction of mercury in the analyzed soils has indicated that the highest percentage content in the total content had mercury linked with sulphides. A high content of mercury linked with organic matter was also noted. The content of bioavailable mercury did not exceed 1.5% of the total content.

Go to article

Authors and Affiliations

Anna Flader
Barbara Gworek
Jolanta Kostrzewa-Szulc
Download PDF Download RIS Download Bibtex

Abstract

The reduction of mercury emissions in currently existing coal-based power plant solutions by each method i.e. preliminary, primary and secondary (consisting of introducing coal into the combustion chamber and then removing mercury from the combustion gases arising from the combustion process) does not solve the problem of achieving the required limits by power plants. Therefore, the need has arisen to look for new, effective solutions.

The results presented in the work concern the analysis of environmental benefits for the use of zeolites obtained from by-products of coal combustion such as fly ash (from hard coal and lignite) in technologies for removing gaseous forms of mercury. The tested zeolites were silver-modified X-type structures. The reference material in the considerations was active carbon impregnated with bromine – a commercially available sorbent on the market.

The article considers environmental benefits resulting from the use of tested zeolites taking the product life cycle, sorbent efficiency and the possibility of its regeneration compared to activated carbon (AC/Br) into account. The LCA analysis was performed taking the estimated material and energy balances of the manufacturing processes into account. When comparing the production process of type X zeolite materials on the processing line and activated carbons in the amount necessary to capture 375 g Hg from exhaust gases, the LCA analysis showed that zeolites contribute to a lower potential impact on the environment. The advantage is that 5 times less zeolite sorbent than activated carbons is needed to capture the same amount of mercury. In addition, zeolite materials can be regenerated, which extends their life time

Go to article

Authors and Affiliations

Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID
Rafał Panek
Download PDF Download RIS Download Bibtex

Abstract

The research was carried out on two different industrial wastes deposited on the premises of a chemical plant: used graphite electrode after electrolysis of brine applying the mercury-cathode method and coal catalyst past the usage period after the synthesis of vinyl chloride. The need for utilization of the waste necessitated development of a fast and reliable procedure for mercury determination. We have found procedures for mineralization of coal samples and determination of small concentrations of mercury by the cold vapour of atomic absorption spectrometry (CV AAS) in the available literature. Six procedures for passing mercury from the examined waste into solutions were tested, and mercury was assayed using the titration method of Wickbold and CV AAS. The results were evaluated statistically. It has been found that four ways to mineralize the examined industrial waste samples can be used.
Go to article

Authors and Affiliations

Jerzy Ciba
Joanna Kluczka
Maria Zolotajkin
Download PDF Download RIS Download Bibtex

Abstract

Work is being carried out on possibilities of limiting the content of mercury in hard coal products by gravity concentration of run-of-mine coal in the Branch of the Institute of Mechanized Construction and Rock Mining in Katowice and on the Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow. Under domestic industrial conditions, gravity concentration is carried out with heavy medium liquids and in jigs. Preliminary - pilot studies have shown the possibility of mercury removal also by using the dry deshaling method involving vibratory air separators. Mercury is mainly found in the pyrite and the rubble formed by the mineral carbon, but also in the organic carbon. Some of it is located in layers of coal roof fields, which in the course of their exploitation go to coal. The mercury removal efficiency during the gravity concentration process will depend on the decomposition of the listed components in the density fractions. The paper presents the results of investigations of total mercury and total sulphur content in the separated coal fractions from four mines. These contents were determined in fractions: –1.5 g/cm3 (conventionally clean coal – concentrate), 1.5–1.8 g/cm3 (conventionally middlings) and +1.8 g/cm3 (conventionally rock – waste). The results are summarized in Tables 3–5 and in Charts 1–4. Conversely, graphs 5-8 show the relationship between mercury content and total sulphur content in the tested coal samples. The study, which can be called a preliminary analysis of the susceptibility of the coals to gravity concentration, showed that the dry deshaling method on the vibratory air separators would allow significant amounts of mercury accumulated in the middlings and waste fractions to be removed.

Go to article

Authors and Affiliations

Ireneusz Baic
Wiesław Blaschke
Tadeusz Dziok
Andrzej Strugała
Wojciech Sobko
Download PDF Download RIS Download Bibtex

Abstract

In ceramic forming techniques high particles packing can provide better properties of the final ceramic products. The high quality of the material coupled with the shape complexity of the ceramic product is still challenging. The aim of this work was the optimization and preparation of the ceramic samples based on two alumina powders of different particle size (AA05: 0.5 μm and TM-DAR: 0.15 μm). Firstly, ceramic suspensions of 50vol.% solid loading and the volumetric ratio of AA05 to TM-DAR 1:1, 2:1, 3:1, 4:1, respectively have been prepared. The 2-carboxyethyl acrylate was applied as the new monomer limiting the negative effect of oxygen inhibition. Additionally, the cold isostatic pressing (CIP) was used in order to increase relative density of green bodies. The results of presented research have shown that samples with the ratio of AA05 to TM-DAR 2:1 were characterized by the highest green density (62%). Moreover, CIP process proved to be effective and increased the density of green bodies from 62% to 67%. The pore size distribution of the green bodies has been measured. Samples were sintered at different conditions (1400°C, 1450°C and 1500°C for 1h and 1300°C, 1400°C, 1450°C and 1500°C for 5h).

Go to article

Authors and Affiliations

P. Wiecińska
E. Pietrzak
Y. Sakka
J. Nakamura
M. Szafran
Download PDF Download RIS Download Bibtex

Abstract

Coal combustion processes are the main source of mercury emission to the environment in Poland. Mercury is emitted by both power and heating plants using hard and brown coals as well as in households. With an annual mercury emission in Poland at the level of 10 Mg, the households emit 0.6 Mg. In the paper, studies on the mercury release in the coal and biomass combustion process in household boilers were conducted. The mercury release factors were determined for that purpose. For the analyzed samples the mercury release factors ranged from 98.3 to 99.1% for hard coal and from 99.5% to 99.9% for biomass, respectively. Due to the high values of the determined factors, the amount of mercury released into the environment mainly depends on the mercury content in the combusted fuel. In light of the obtained results, the mercury content in the examined hard coals was 6 times higher than in the biomass (dry basis). Taking the calorific value of fuels into account, the difference in mercury content between coal and biomass decreased, but its content in coal was still 4 times higher. The mercury content determined in that way ranged from 0.7 to 1.7 μg/MJ for hard coal and from 0.1 to 0.5 μg/MJ for biomass, respectively. The main opportunity to decrease the mercury emissions from households is offered by the use of fuels with a mercury content that is as low as possible, as well as by a reduction of fuel consumption. The latter could be obtained by the use of modern boilers as well as by the thermo-modernization of buildings. It is also possible to partially reduce mercury emissions by using dust removal devices.

Go to article

Authors and Affiliations

Tadeusz Dziok
Elżbieta Kołodziejska
Ewa Kołodziejska
Agnieszka Woszczyna
Download PDF Download RIS Download Bibtex

Abstract

Hg concentration was studied in waters of 16 lakes in the Suwałki Landscape Park. The samples of lake water were collected from the surface zone and I m above the bottom, in the deepest site of the lakes. Apart from Hg concentration, the measurements included: the pH, soluble oxygen, water saturation with oxygen, electrolytic conductivity and total hardness of water. Hg concentration varied from lake to lake, but remained at the same levels in consecutive years. It has been found that Hg concentration in the bottom zone is higher than that in the surface zone. Significant differences were found between mean Hg concentrations in the bottom zone both during the summer and winter stagnation. No significant differences were found in mean Hg concentration in surface waters in different seasons of the year.
Go to article

Authors and Affiliations

Wojciech Dobicki
Ryszard Polechoński
Przemysław Pokorny
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, actions allowing for a reduction of anthropogenic mercury emission are taken worldwide. Great emphasis is placed on reducing mercury emission from the processes of energochemical coal conversion, mainly from the coal combustion processes. One of the methods which enable a reduction of anthropogenic mercury emission is the removal of mercury from coal before its conversion. It should be pointed out that mercury in hard coal may occur both in the organic and mineral matter. Therefore, a universal method should allow for the removal of mercury, combined in both ways, from coal. In the paper, a concept of the hybrid mercury removal process from hard coal was presented. The idea of the process is based on the combination of the coal cleaning process using wet or dry methods (first stage) and the thermal pretreatment process at a temperature in the range from 200 to 400 °C (second stage). In the first stage, a part of mercury occurring in the mineral matter is removed. In the second stage, a part of mercury occurring in the organic matter as well as in some inorganic constituents characterized by a relatively low temperature of mercury release is removed. Based on the results of the preliminary research, the effectiveness of the decrease in mercury content in coal in the hybrid process was estimated in the range from 36 to 75% with the average at the level of 58%. The effect of the decrease in mercury content in coal is much more significant when mercury content is referred to a low heating value of coal. So determined, the effectiveness was estimated in the range from 36 to 75% with the average at the level of 58%.

Go to article

Authors and Affiliations

Tadeusz Dziok
Andrzej Strugała
Tomasz Chmielniak
Ireneusz Baic
Wiesław Blaschke
Download PDF Download RIS Download Bibtex

Abstract

Removal of mercury(II) (Hg(II)) from aqueous media by a new biosorbent was carried out. Natural Polyporus squamosus fungus, which according to the literature has not been used for the purpose of Hg(II) biosorption before, was utilized as a low-cost biosorbent, and the biosorption conditions were analyzed by response surface methodology (RSM). Medium parameters which were expected to affect the biosorption of Hg(II) were determined to be initial pH, initial Hg(II) concentration (Co), temperature (T (°C)), and contact time (min). All experiments were carried out in a batch system using 250 mL fl asks containing 100 mL solution with a magnetic stirrer. The Hg(II) concentrations remaining in fi ltration solutions after biosorption were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Based on the RSM results, the optimal conditions were found to be 5.30, 47.39 mg/L, 20°C and 254.9 min for pH, Co, T (°C), and contact time, respectively. Under these optimal conditions, the maximum biosorbed amount and the biosorption yield were calculated to be 3.54 mg/g and 35.37%, respectively. This result was confi rmed by experiments. This result shows that Polyporus squamosus has a specifi c affi nity for Hg ions. Under optimal conditions, by increasing the amount of Polyporus squamosus used, it can be concluded that all Hg ions will be removed

Go to article

Authors and Affiliations

Yusuf Uzun
Tekin Şahan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents current reports on kinetics and mechanisms of reactions with mercury which take place in the exhaust gases, discharged from the processes of combustion of solid fuels (coals). The three main stages were considered. The first one, when thermal decomposition of Hg components takes place together with formation of elemental mercury (Hg0). The second one with homogeneous oxidation of Hg0 to Hg2+ by other active components of exhaust gases (e.g. HCl). The third one with heterogeneous reactions of gaseous mercury (the both - elemental and oxidised Hg) and solid particles of fl y ash, leading to generation of particulate-bound mercury (Hgp). Influence of exhaust components and their concentrations, temperature and retention time on the efficiency of mercury oxidation was determined. The issues concerning physical (gas-solid) and chemical speciation of mercury (fractionation Hg0-Hg2+) as well as factors which have influence on the mercury speciation in exhaust gases are discussed in detail.

Go to article

Authors and Affiliations

Marianna Czaplicka
Halina Pyta
Download PDF Download RIS Download Bibtex

Abstract

The issue of mercury emission and the need to take action in this direction was noticed in 2013 via the Minamata Convention. Therefore, more and more often, work and new law regulations are commencing to reduce this chemical compound from the environment. The paper presents the problem of removing mercury from waste gases due to new BREF/BAT restrictions, in which the problem of the need to look for new, more efficient solutions to remove this pollution was also indicated. Attention is paid to the problem of the occurrence of mercury in the exhaust gases in the elemental form and the need to carry out laboratory tests. A prototype installation for the sorption of elemental mercury in a pure gas stream on solid sorbents is presented. The installation was built as part of the LIDER project, financed by the National Center for Research and Development in a project entitled: “The Application of Waste Materials From the Energy Sector to Capture Mercury Gaseous Forms from Flue Gas”. The installation is used for tests in laboratory conditions in which the carrier gas of elemental mercury is argon. The first tests on the zeolite sorbent were made on the described apparatus. The tested material was synthetic zeolite X obtained as a result of a two-stage reaction of synthesis of fly ash type C with sodium hydroxide. Due to an increase, the chemical affinity of the tested material in relation to mercury, the obtained zeolite material was activated with silver ions (Ag+) by an ion exchange using silver nitrate (AgNO3). The first test was specified for a period of time of about 240 minutes. During this time, the breakthrough of the tested zeolite material was not recorded, and therefore it can be concluded that the tested material may be promising in the development of new solutions for capturing mercury in the energy sector. The results presented in this paper may be of interest to the energy sector due to the solution of several environmental aspects. The first of them is mercury sorption tests for the development of new exhaust gases treatment technologies. On the other hand, the second aspect raises the possibility of presenting a new direction for the management and utilization of combustion by-products such as fly ash.

Go to article

Authors and Affiliations

Piotr Kunecki
Dorota Czarna-Juszkiewicz
Rafał Panek
Magdalena Wdowin
Download PDF Download RIS Download Bibtex

Abstract

This article presents the effects of the application of the passive method of flue gas purification from mercury compounds emitted during combustion. The research was carried out on a fluidized bed installation using coal. The dry method of acid gas pollutants reduction was applied during the combustion with the use of 9 modified sodium sorbents. They were fed into a gas jet of 573 K in two molar ratios (sodium contained in the sorbent to the sulphur contained in the fuel). The mercury emission level into the atmosphere was determined based on the mercury content in the solid substrates of the combustion process (in the fuel and the sorbent) and the solid products (fly ash and bottom waste). The combustion process was accompanied by mercury emission 14.7 μgHg/m3. During the removal of acid pollutants from fumes, a decrease in mercury concentration was achieved. The degree of the mercury reduction depended on the type the sorbent used, the manner of modification and the molar ratio in which they were fed into the installation (2 Na/S = 0.5; 2.1). Each time, the more the sorbent was fed into the installation, the bigger the reduction of the mercury emission level. Among the unmodified sorbents, the lowest emission level was achieved for the raw bicarbonate – 3.7 μgHg/m3. For baking soda it was 9.7 μgHg/m3. The application of mechanically modified compounds based on baking soda resulted in the reduction of the Hg emission in fumes up to 2.5–2.6 μgHg/m3. The determined mercury concentration levels in the gases during the purification of the fumes were compared with the accepted Hg emissions contained in the BAT conclusions for large combustion plants. As for all of the existing and newly built plants with a heat capacity below 300 MW, satisfactory effects would be achieved by the use of mechanically modified sorbents in the molar concentration of 2 Na/S = 2.1.

Go to article

Authors and Affiliations

Anna Pajdak
Dorota Łuczkowska
Barbara Walawska
Download PDF Download RIS Download Bibtex

Abstract

In the processes of coal mining, preparation and combustion, the rejects and by-products are generated. These are, among others, the rejects from the coal washing and dry deshaling processes as well as the coal combustion by-products (fly ash and slag). Current legal and industry regulations recommend determining the content of mercury in them. The regulations also define the acceptable content of mercury. The aim of the paper was to determine the mercury content in the rejects derived from the coal cleaning processes as well as in the combustion by-products in respect of their utilization. The mercury content in the representative samples of the rejects derived from the coal washing and dry deshaling processes as well as in the coal combustion by products derived from 8 coal-fired boilers was determined. The mercury content in the rejects from the coal washing process varied from 54 to 245 μg/kg, (the average of 98 μg/kg) and in the rejects from the dry deshaling process it varied from 76 to 310 μg/kg (the average of 148 μg/kg). The mercury content in the fly ash varied from 70 to 1420 μg/kg, (the average of 567 μg/kg) and in the slag it varied from 8 to 58 μg/kg (the average of 21 μg/kg). At the moment, in light of the regulations from the point of view of mercury content in the rejects from the coal preparation processes and in the coal combustion by-products, there are no significant barriers determining the way of their utilization. Nevertheless, in the future, regulations limiting the maximum content of mercury as well as the acceptable amount of leachable mercury may be introduced. Therefore, preparing for this situation by developing other alternative methods of using the rejects and by-products is recommended.

Go to article

Authors and Affiliations

Piotr Burmistrz
Tadeusz Dziok
Krzysztof Bytnar
Download PDF Download RIS Download Bibtex

Abstract

Mercury is ranked third on the Substance Priority List, an index of substances determined to pose the most significant potential threat to human health compiled by the Agency for Toxic Substances and Disease Registry. This element is activated with the extraction of hard coal and accumulated in the natural environment or re-emitted from the waste deposited on dumping grounds. So far, studies on mercury content have focused on the analysis of the dumps surface and the adjacent areas. In this paper, the detection of mercury content inside mining waste dumping grounds was analysed. The recognition of mercury content in the profile of the mining waste dump is important in terms of the dismantling of the facility. The dismantling may pose a risk of environmental pollution with mercury due to the possibility of increased fire risk, re-emission, and the transfer of xenobiotics to another place. In this paper, the study of mercury content in the mining waste dump profile was presented. The research demonstrated that there is no significant relationship between the mercury content and the sampling depth. The mercury content in the mining waste was determined based on the rank and origin of hard coal only. Therefore, intensive efforts should be undertaken to identify the environmental hazards arising from the dismantling of mining waste dumps and to adopt measures to prevent these hazards.
Go to article

Bibliography

[1] S.A. Musstjab, A.K. Bhowmik, S. Qamar, S.T. Abbas Shah, M. Sohail, S.I. Mulla, M. Fasola, H. Shen, Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan. Sci. Total Environ. 569-570, 585-593 (2016).
[2] X. Wang, Z. He, H. Luo, M. Zhang, D. Zhang, X. Pan, G.M. Gadd, Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci. Total Environ. 615 (15), 615-623 (2018).
[3] K . Halbach, Ø. Mikkelsen, T. Berg, E. Steinnes, The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567-574 (2017).
[4] D . Yu, H. Duan, Q. Song, X. Li, H. Zhang, H. Zhang, Y. Liu, W. Shen, J. Wang, Characterizing the environmental impact of metals in construction and demolition waste. Environ. Sci. Pollut. Res. 25, 13823-13832 (2018).
[5] J. Yang, M. Takaoka, A. Sano, A. Matsuyama, R. Yanase, Vertical distribution of total mercury and mercury methylation in a landfill site in Japan. Int. J. Environ. Res. Public Health 15 (6), 1252 (2018).
[6] K . Gogola, T. Rogala, M. Magdziarczyk, A. Smolinski, The mechanisms of endogenous fires occurring in extractive waste dumping facilities, Sustainability 12, 2856 (2020). DOI: https://doi.org/10.3390/su12072856
[7] D . Raj, A. Chowdhury, S.K. Maiti, Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess. 23, 767-787 (2017).
[8] R . Fernández-Martínez, J.M. Esbrí, P. Higueras, I. Rucandio, Comparison of mercury distribution and mobility in soils affected by anthropogenic pollution around chloralkali plants and ancient mining sites. Sci. Total Environ. 671, 1066-1076 (2019).
[9] A. González-Martínez, M. de Simón-Martín, R. López, R. Táboas-Fernández, A. Bernardo-Sánchez, Remediation of potential toxic elements from wastes and soils: analysis and energy prospects. Sustainability 11, 3307 (2019). DOI: https://doi.org/10.3390/su11123307
[10] U nited Nations Environment Programme, 2013. Global Mercury Assessment, Sources, emissions, releases and environmental transport. Accessed: January 6, 2016 at: http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf.
[11] N . Howaniec, A. Smolinski, Biowaste utilization in the process of co-gasification with bituminous coal and lignite. Energy 118, 18-23 (2017).
[12] P. Krawczyk, N. Howaniec, A. Smolinski, Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 114, 1207-1213 (2016).
[13] A. Smolinski, N. Howaniec, Analysis of porous structure parameters of biomass chars versus bituminous coal and lignite carbonized at high pressure and temperature – chemometric study. Energies 10, 1457 (2017). DOI: https://doi.org/10.3390/en10101457
[14] J. Zdeb, N. Howaniec, A. Smolinski, Utilization of carbon dioxide in coal gasification – an experimental study. Energies 12, 140 (2019). DOI: https://doi.org/10.3390/en12010140
[15] M. Sexauer, M. Gustin, M. Coolbaugh, B. Engle, R. Fitzgerald, S. Keislar, D. Lindberg, J. Nacht, J. Quashnick, C. Rytuba, H. Sladek, R. Zhang, R. Zehner, Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ. Geol. 43, 339-351 (2003).
[16] F. Steenhuisen, S.J. Wilson, Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmosph. Environ. 211, 138-150 (2019).
[17] A. Michalska, B. Bialecka, A. Bauerek, The hazard of mercury contamination of the environment resulting from the disposal of mining waste. Science and technologies in geology, exploration and mining, Conference Proceedings 3, (2015). ISBN 978-619-7105-33-9 / ISSN 1314-2704. DOI: https://doi.org/10.5593/sgem2015B13
[18] T . Antoszczyszyn, A. Michalska, The potential risk of environmental contamination by mercury contained in coal mining waste. Journal of Sustainable Mining 15, 191-196 (2017).
[19] P. Rompalski, A. Smolinski, H. Krzton, J. Gazdowicz, N. Howaniec, L. Róg, Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arab. J. Chem. 12 (8), 3927-3942 (2019).
[20] B.G. Miller, Clean Coal Engineering Technology, Butterworth-Heinemann (2017). ISBN 978-0-12-811365-3.
[21] X. Bai, W. Li, Y. Wang, H. Ding, The distribution and occurrence of mercury in Chinese coals. Int. J. Coal Sci. Technol. 4, 172-182 (2017).
[22] G . Ozbayoglu, Removal of hazardous air pollutants based on commercial coal preparation data. Physicochem. Probl. Miner Process. 49 (2), 621-629 (2013).
[23] H .N. Dougherty, A.P. Schissler, SME Mining Reference Handbook, second ed. Society for Mining, Metallurgy & Exploration (2020). ISBN 978-0-87335-435-6.
[24] J.E. Gray, P.M. Theodorakos, D.L. Fey, D.P. Krabbenhoft, Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA, Environ. Geochem. Health 37, 35-48 (2015).
[25] T .B. Das, S.K. Pal, T. Gouricharan, K.K. Sharma, A. Choudhury, Evaluation of reduction potential of selected heavy metals from Indian coal by conventional coal cleaning. Int. J. Coal Prep. Util. 33, 300-312 (2013).
[26] T . Dziok, A. Strugala, A. Rozwadowski, M. Macherzynski, S. Ziomber, Mercury in the waste coming from hard coal processing. Gospodarka Surowcami Mineralnymi 31 (1), 107-122 (2015).
[27] B. Klojzy-Karczmarczyk, J. Mazurek, Mercury in soils surrounded by selected dumps of coal mining waste. Energy Policy 13 (2), 245-252 (2010).
[28] B. Klojzy-Karczmarczyk, J. Mazurek, Soil contamination with mercury compounds within the range of a conventional coal-fired power plant. Energy Policy 10 (2), 593-601 (2007).
[29] Ministry of Environment. Regulation of the Minister of the Environment of September 9, 2002 on soil quality standards and land quality standards. Journal of Laws 165, 2002, item 1359.
[30] Mining Waste Act. Mining Waste Act (Journal of Laws No. 138 of 2008, 2008, item 865).
[31] Waste Act, 2016. The Waste Act. Journal of Laws of 2016, 2016, item 1987.
Go to article

Authors and Affiliations

Anna Michalska
1
ORCID: ORCID
Adam Smoliński
1
ORCID: ORCID
Aleksandra Koteras
1
ORCID: ORCID

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Sixteen samples were designed for analysis (hard coal, aggregate – barren rock, hard coal sludge). The total mercury content and the amount of mercury leaching were determined. The percentage of leachable form in the total content was calculated. The studies were carried out under various pH medium. The leachability under conditions close to neutral was determined in accordance with the PN EN 12457/1-4 standard. The leachability under acidic medium (pH of the solution – approx. 3) was determined in accordance with principles of the TCLP method. The mercury content was determined by means of the AAS method. For hard coal the total mercury content was 0.0384–0.1049 mg/kg. The level of leaching on mean was 2.6%. At the acidic medium the amount of leaching increases to an mean 4.1%. The extractive waste of aggregate type features a higher total mercury content in the finest fraction < 6 mm (up to 0.4564 mg/kg) and a lower content in the fraction 80–120 mm (up to 0.1006 mg/kg). The aggregate shows the percentage of the leachable form on mean from 1.4 to 2.2%. With pH decreasing to approx. 3, the amount of leaching grows up to mean values of 1.7–3.2%. Coal sludge features the total mercury content of 0.1368–0.2178 mg/kg. The percentage of mercury leachable form is approx. 1.8%. With pH decreasing the value increases to mean value of 3.0%. In general, the leachability of mercury from hard coals and extractive waste is low, and the leachability in an acidic medium grows approx. twice. Such factors as the type and origin of samples, their grain composition, and the pH conditions, have basic importance for the process. The time of waste seasoning and its weathering processes have the greatest impact on increasing the leaching of mercury from the extractive waste.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study is to analyze effect of ground granulated blast furnace slag (GGBFS) in concrete on the pore structure, this research will contribute to the knowledge regarding the use of GGBFS as a cementitious material in terms of the future reference and potential improvement to the properties of concrete. To this aim, on the one hand a control specimens (CS) and another samples with 40% and 60% of GGBFS as replacement cement with moist cured at 20oC, 27oC, and cured at site. The compressive strength and the Mercury intrusion porosimetry (MIP) test were done. The result indicates that the strength of concrete with GGBFS at early ages tend to be lower in comparison with the CS. However, the GGBFS reaction plays important roles at the later ages. The samples cured at higher temperature produce higher strength value. The total pore volume (TPV) of the concrete use GGBFS decreases with increasing age.
Go to article

Authors and Affiliations

Abdul Chalid
1

  1. Senior Lectures Post Graduate of Civil Eng. Sangga Buana University, Jalan Surapati No. 189 Bandung-West Java 40123, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Samples of steam coal used in heat and power plants as well as densimetric fractions obtained on a laboratory scale by dense organic liquid separation have been examined. The contents of ash, mercury, chromium, cadmium, copper, nickel and lead have been determined in coal, in the light and medium fraction as well as in the refuse. The degree of removal of mineral matter and the examined heavy metals as well as the coal combustible parts yield have been determined. Examination of 5 coals revealed that it is possible to remove 41% of mercury and more than 35% of other heavy metals bound to mineral matter in coal.

Go to article

Authors and Affiliations

Elwira Zajusz-Zubek
Jan Konieczyński
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study is to determine the mercury content in hard coal, randomly taken from the USCB and in by-products of hard coal mining (fresh mining waste), i.e. aggregates (gangue) and hard coal sludge and mining waste from the Siersza dump (weathered waste). The 34 samples were intended for analysis. The total mercury content and the amount of mercury leaching from solid samples was determined. The percentage of the leaching form in the total element content, i.e. the level of mercury release from the material (leaching level), was also calculated. The amount of mercury leaching was determined by a static method using a batch test 1:10. The highest possibility of leaching mercury is characterized by weathered waste from the Siersza dump and slightly lower analyzed hard coal from the U pper Silesian Coal Basin (USCB). For hard coal samples, the total mercury content is between 0.0275–0.1236 mg/kg. However, the amount of mercury leaching from coal samples is 0.0008–0.0077 mg/kg. The aggregate is characterized by a higher total mercury content in the finest fraction 0–6 mm, within 0.1377–0.6107 mg/kg and much lower in the 80-120 mm fraction, within 0.0508–0.1274 mg/kg. The amount of elution is comparable in both fractions and amounts to 0.0008–0.0057 mg/kg. Coal sludge has a total mercury content of 0.0937–0.2047 mg/kg. L ow leaching values of 0.0014–0.0074 mg/ kg are also observed. Weathered mining waste has a total mercury content of 0.0622–0.2987 mg/kg. However, leaching values from weathered waste are much higher than from fresh mining waste. This value is 0.0058–0.0165 mg/kg. In the hard coal extracted from U SCB, the leaching level is 4.7% on average. Mining waste is characterized by a large variation in the proportion of mercury leaching form and the differences result from the seasoning time of the samples. Waste or by-products of hard coal production, such as aggregates and coal sludge, show a mercury washout form at an average level of 1.7%. The proportion of leachable form in weathered waste increased strongly to 7.3%. Elution characteristics vary for different groups of materials tested. Factors such as the type and origin of samples, their granulometric composition and the seasoning time of the material are of fundamental importance and demonstrated in the work.

Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
Janusz Mazurek
Download PDF Download RIS Download Bibtex

Abstract

Mercury emissions have become one of the problems in the energy sector in recent years. The currently used mercury removal techniques include: primary, secondary and preliminary methods. However, due to the large variation in the mercury content in hard and brown coal and the different characteristics of power plants, these methods are often not effective enough to meet the new requirements set by BREF/BAT which requires a search for new, high-efficiency solutions. The proposal for a new technology has been developed in the project “Hybrid Adsorption Systems to Reduce Mercury Emissions Using Highly Effective Polymer Components” (HYBREM). The project was implemented by the consortium of SBB Energy SA and ZEPAK Pątnów II Power Plant. An innovative, high-efficiency hybrid technology for purifying exhaust gases from mercury was developed. GORE polymer modules were used as a technology base where, in combination with the injection of solid sorbents, a hybrid technology was developed. To assess the economic efficiency of the similar case as in the HYBREM project model based on OPEX and CAPEX, each method was selected separately. The article focused on the substitution of solid sorbents used in the HYBREM project by zeolite based materials. Modified zeolite X, applied in the project, was derived from fly ash. Preliminary analysis shows that the system of proposed technologies is very cost-competitive compared only to GORE technology. The basic factors are the possibility of recovering zeolites from ash, combined with low investment outlays.

Go to article

Authors and Affiliations

Renata Koneczna
ORCID: ORCID
Robert Żmuda
Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID

This page uses 'cookies'. Learn more