Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Use of welding technology for the repair of steel castings is particularly common in two areas. These include weld surfacing of protrusions that remained incomplete after casting, or filling the surface defects (cavities). These defects are more common for steel casting than for graphite cast iron, due to the lower fluidity of steel. This article describes a suitable technological process of repairing the defects on the casting using the welding technology. A specimen produced for this purpose was prepared by carving a groove into a cast steel plate 20 GL, which was then filled with a weld metal using MAG (135) technology. The following evaluation of the basic characteristics of the repaired site point to the suitability of the selected technological parameters of the repair procedure. Metallographic evaluation was carried out, further evaluation of mechanical properties by tensile test, bend test and Vickers hardness test. The proposed methodology for the evaluation repair of foundry defects in steel castings also meets the requirements for the approval of welding procedures in accordance with the relevant valid legislation.
Go to article

Authors and Affiliations

M. Mičian
J. Winczek
R. Koňár
I. Hlavatý
M. Gucwa
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to validate the use of measurement methods in the study of GFRP joints. A number of tests were carried out by means of a tensile machine. The studies were concerned with rivet connection of composite materials. One performed two series of tests for two different forces and two fibre orientations. Using Finite Element Method (FEM) and Digital Image Correlation (DIC), strain maps in the test samples were defined. The results obtained with both methods were analysed and compared. The destructive force was analysed and, with the use of a strain gauge, the clamping force in a plane parallel to the annihilated sample was estimated. Destruction processes were evaluated and models of destruction were made for this type of materials taking into account their connections, such as riveting.

Go to article

Bibliography

[1] J.P. Davim, P. Reis, and C.C. Antonio. Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up. Composites Science and Technology, 64(2):289–297, 2004. doi: 10.1016/S0266-3538(03)00253-7.
[2] A. Atas and C. Soutis. Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Composites Part B: Engineering, 54:20–27, 2013. doi: 10.1016/j.compositesb.2013.04.071.
[3] A.M. Girão Coelho and J.T. Mottram. A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Materials & Design, 74:86–107, 2015. doi: 10.1016/j.matdes.2015.02.011.
[4] Z. Cao and M. Cardew-Hall. Interference-fit riveting technique in fiber composite laminates. Aerospace Science and Technology, 10(4):327–330, 2006. doi: 10.1016/j.ast.2005.11.003.
[5] M. Kłonica, J. Kuczmaszewski, M.P. Kwiatkowski, and J. Ozonek. Polyamide 6 surface layer following ozone treatment. International Journal of Adhesion and Adhesives, 64:179–187, 2016. doi: 10.1016/j.ijadhadh.2015.10.017.
[6] R.F. Gibson. Principles of Composite Material Mechanics. CRC Press, 4 edition, 2016.
[7] R. Bielawski, M. Kowalik, K. Suprynowicz, and P. Pyrzanowski. Possibility of usage of aluminium rivet nuts connections in composite materials. In Solid State Phenomena, volume 240, pages 137–142. Trans Tech Publications, 2016. doi: 10.4028/www.scientific.net/SSP.240.137.
[8] L. Blaga, J.F. Dos Santos, R. Bancila, and S.T. Amancio-Filho. Friction Riveting (FricRiveting) as a new joining technique in GFRP lightweight bridge construction. Construction and Building Materials, 80:167–179, 2015. doi: 10.1016/j.conbuildmat.2015.01.001.
[9] N. Chowdhury,W.K. Chiu, J.Wang, and P. Chang. Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures. Composite Structures, 121:315–323, 2015. doi: 10.1016/j.compstruct.2014.11.004.
[10] J.-H.Yun, J.-H. Choi, and J.-H.Kweon. Astudy on the strength improvement of the multi-bolted joint. Composite Structures, 108:409–416, 2014. doi: 10.1016/j.compstruct.2013.09.047.
[11] M. Rodzewicz. An investigation into the strength and fatigue properties of a high-loaded aeronautical composite structures. In Proceedings of the Eight International Seminar Resent Research and Design Progress in Aeronautical Engineering and its Influence on Education, Brno, Czech Republic, 2008.
[12] K. Palanikumar. Experimental investigation and optimisation in drilling of GFRP composites. Measurement, 44(10):2138–2148, 2011. doi: 10.1016/j.measurement.2011.07.023.
[13] C. Atas. Bearing strength of pinned joints in woven fabric composites with small weaving angles. Composite Structures, 88(1):40–45, 2009. doi: 10.1016/j.compstruct.2008.04.002.
[14] J.H. Deng, C. Tang, M.W. Fu, and Y.R. Zhan. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting. Materials Science and Engineering: A, 591:26–32, 2014. doi: 10.1016/j.msea.2013.10.084.
[15] J. Zhang, D. Qi, L. Zhou, L. Zhao, and N. Hu. A progressive failure analysis model for composite structures in hygrothermal environments. Composite Structures, 133:331–342, 2015. doi: 10.1016/j.compstruct.2015.07.063.
[16] B. Koohbor, S. Mallon, A. Kidane, and M.A. Sutton. A DIC-based study of in-plane mechanical response and fracture of orthotropic carbon fiber reinforced composite. Composites Part B: Engineering, 66:388–399, 2014. doi: 10.1016/j.compositesb.2014.05.022.
[17] M.A. Sutton, J.J. Orteu, and H. Schreier. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Science & Business Media, 2009.
[18] W. Zhiqiang, F. Fengzhou, L. Bing, and W. Zhiyong. An experimental method for eliminating effect of rigid out-of-plane motion on 2D-DIC. Optics and Lasers in Engineering, 73:137–142, 2015. doi: 10.1016/j.optlaseng.2015.04.015.
Go to article

Authors and Affiliations

Radosław Bielawski
1
Michał Kowalik
1
Karol Suprynowicz
1
Witold Rządkowski
1
Paweł Pyrzanowski
1

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The scope of the paper is to investigate analytically and determine experimentally the shear resistance of low height reinforced precast concrete lintels. The chosen procedures included in national and international standards applied for the design of structural concrete elements to an estimation of shear behaviour of reinforced concrete elements are described. The characteristic and designed shear strength of precast concrete lintels are determined and compared with experimentally obtained results. The shear resistance for precast concrete lintels was determined by laboratory tests according to a European standard. The assessment of the in-situ compressive strength of concrete in precast concrete lintel is specified. The designed compressive strength class is confirmed. The real reinforcement distribution is verified to assess the wide scatter of experimentally obtained failure forces. A short literature outlook of the papers concerning investigations on lintels and shear resistance of concrete is given also. The paper can provide scientists, engineers, and designers a theoretical and experimental basis in the field of precast concrete lintels shear resistance.

Go to article

Authors and Affiliations

Andrzej Ambroziak
ORCID: ORCID
Jarosław Kondrat
Marek Wesołowski
Download PDF Download RIS Download Bibtex

Abstract

Fe-based bulk metallic glasses (BMGs) have been extensively investigated due to their ultrahigh strength and elastic moduli as well as desire magnetic properties. However, these BMGs have few applications in industrial productions because of their brittleness at room temperature. This study is focused on the effect of cooling rate on the mechanical properties (especially toughness) in the Fe41Co7Cr15Mo14Y2C15B6 BMG. For this aim, two samples with the mentioned composition were fabricated in a water-cooled copper mold with a diameter of 2 mm, and in a graphite mold with a diameter of 3 mm. The formation of crystalline phases of Fe23(B, C)6, α-Fe and Mo3Co3C based on XRD patterns was observed after the partial crystallization process. To determine the toughness of the as-cast and annealed samples, the indentation technique was used. These results revealed that the maximum hardness and toughness were depicted in the sample casted in the water-cooled copper mold and annealed up to 928°C. The reason of it can be attributed to the formation of crystalline clusters in the amorphous matrix of the samples casted in the graphite mold, so that this decrease in the cooling rate causes to changing the chemical composition of the amorphous matrix.
Go to article

Authors and Affiliations

P. Rezaei-Shahreza
1
ORCID: ORCID
H. Redaei
1
ORCID: ORCID
P. Moosavi
1
ORCID: ORCID
S. Hasani
1
A. Seifoddini
1
ORCID: ORCID
B. Jeż
2
ORCID: ORCID
M. Nabiałek
2
ORCID: ORCID

  1. Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  2. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland

This page uses 'cookies'. Learn more