Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with a three-phase power system with hybrid transformer (HT) installed between two AC sources. The main aim of this paper is analyze the basic properties of HT with active load and ability to bidirectional energy flow. The HT contains two main units – a conventional transformer with electromagnetic coupling and PWM AC line chopper connected with secondary windings with electric coupling. The HT is located between the distribution system and a Local Balancing Area (LBA) with low power local energy sources. After describing the HT circuit and three-phase, twosources power system, the mathematical and circuit models of the AC source with HT are presented. These models are verified by means of the simulation and experimental test results obtained for a three-phase HT of about 3 kVA rated power.

Go to article

Authors and Affiliations

J. Kaniewski
Z. Fedyczak
P. Szcześniak
Download PDF Download RIS Download Bibtex

Abstract

The uncontrolled power flow in the AC power system caused by renewable energy sources (restless sources, distributed energy sources), dynamic loads, etc., is one of many causes of voltage perturbation, along with others, such as switching effects, faults, and adverse weather conditions. This paper presents a three-phase voltage and power flow controller, based on direct PWM AC/AC converters. The proposed solution is intended to protect sensitive loads against voltage fluctuation and problems with power flow control in an AC power system. In comparison to other solutions, such as DVR, UPFC, the presented solution is based on bipolar matrix choppers and operates without a DC energy storage unit or DC link. The proposed solution is able to compensate 50% voltage sags, in the case of three-phase symmetrical voltage perturbation, and single phase voltage interruptions. Additionally, by means of a voltage phase control with a range of ±60◦ in each phase, it is possible to control the power flow in an AC power system. The paper presents an operational description, a theoretical analysis based on the averaged state space method and four terminal descriptions, and the experimental test results from a 1 kVA laboratory model operating under active load.

Go to article

Authors and Affiliations

Jacek Zbigniew Kaniewski

This page uses 'cookies'. Learn more