Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Feldspar is a basic requirement for glass, ceramics, and other industries. The presence of iron in feldspar is one of the challenging aspects of feldspar processing. To improve the quality of feldspar for use in various industries, dry magnetic separation is one of the best techniques for reducing iron in feldspar, especially in arid regions to overcome the common problem of lack of water resources as well as to reduce the operational cost of the enrichment process. Therefore, dry magnetic separation experiments were carried out to remove the iron content from feldspar ore in the Wadi Umm Harjal area in Egypt to meet the specifications required for different industries. The sample was analysed using XRD, XRF, and optical microscopy, which revealed that it is a mixture of potassium feldspar (microcline/orthoclase), albite, and quartz in the presence of hematite mineral serving as the main iron impurities in addition to the free silica content. The effect of parameters on the activity of the dry high magnetic separators was investigated in addition to cleaning the products. The iron oxide reduced from 0.69% in the head sample to 0.08% after dry high-intensity magnetic separation, and the whiteness increased from 82.01% in the head sample to 95.97% in the separated concentrate. The experimental results showed that there is a possibility to obtain feldspar concentrates with low content of Fe2O3 from the area where according to the results, approximately 88.4% of iron was removed from the head sample.
Go to article

Authors and Affiliations

Khaled Yassin
1
ORCID: ORCID
Mahmoud Ahmed
2
ORCID: ORCID
Mohamed Gamal Eldin Khalifa
3
ORCID: ORCID
Ayman Aly Hagrass
3
ORCID: ORCID

  1. Central Metallurgical Research & Development Institute (CMRDI), Helwan, Cairo, Egypt
  2. Egyptian Mineral Resources Authority (EMRA), Abbasia, Cairo, Egypt
  3. Tabbin Institute for Metallurgical Studies (TIMS), Helwan, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

A better understanding of phosphorus distribution in slag is necessary to develop an effective way to treat dephosphorization slag formed during steelmaking. Here, previous studies on the enrichment, separation, and recovery of phosphorus from dephosphorization slag are reviewed, along with their influencing factors. The results suggest that a proper heat treatment can promote the selective enrichment and growth of P-rich phases. Further, adding P2O5 and FetO facilitates phosphorus enrichment. Also, Ca3(PO4)2 is precipitated from slag containing 18 wt% P2O5. MnO and MgO in the slag barely affect the phosphorus recovery. In contrast, the addition of Al2O3 and TiO2 significantly affects phosphorus enrichment and magnetic separation. A phosphorus recovery rate of more than 70% is achieved with the addition of 10 wt% Al2O3 or 10 wt% TiO2. New phases (Na2Ca4(PO4)2SiO4, Na3PO4, and Ca5(PO4)3F) tend to be formed on the addition of Na2O and CaF2, which promote phosphorus enrichment. However, the addition of Na2O and CaF2 results in the incomplete separation of phosphorus and iron, as CaF2 and Na2O improve slag metallization and the magnetism of iron-rich phases.

Go to article

Authors and Affiliations

Z. Yan-Ling
G. Ming
L. Feng-Shan
Y. Kan

This page uses 'cookies'. Learn more