Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

It is shown that decrease and damping of the traction force at the end of the plunger move is possible not only due to application of a special keeper design, but also due to change of the plunger shank geometric form. The computer modeling with the use of finite element method is used to analyze the influence of system geometry on force distribution along plunger movement. The damping effect is confirmed when special shape plunger shanks are used.
Go to article

Authors and Affiliations

Mykhaylo Zagirnyak
Yurii Branspiz
Andrii Pshenychnyi
Damijan Miljavec
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a research on simulation of magnetic tip-surface interaction as a function of the lift height in the magnetic force microscopy. As expected, magnetic signal monotonically decays with increasing lift height, but the question arises, whether or not optimal lift height eventually exists. To estimate such a lift height simple procedure is proposed in the paper based on the minimization of the fractal dimension of the averaged profile of the MFM signal. In this case, the fractal dimension serves as a measure of distortion of a pure tip-surface magnetic coupling by various side effects, e.g. thermal noise and contribution of topographic features. Obtained simulation results apparently agree with experimental data.

Go to article

Authors and Affiliations

M. Bramowicz
S. Kulesza
T. Chrostek
C. Senderowski
Download PDF Download RIS Download Bibtex

Abstract

The analysis of cogging torque, torque ripple and total harmonic distortion of a permanent magnet (PM) flux-switching machine having separate excitation stators is presented in this study. Further, the effect of unbalanced magnetic force (UMF) on the rotor of this machine is also investigated. A comparison of the analysed machine having different rotor pole configurations is also given. The analysis shows that the largest cogging torque, torque ripple as well as total harmonic distortion (THD) are obtained in the four-rotor-pole machine while the least of THD and torque ripple effects is seen in the thirteen-rotor-pole machine. Furthermore, the evaluation of the radial magnetic force of the machines having an odd number of rotor poles shows that the investigated machine having a five-rotor-pole number exhibits the highest value of UMF, while the smallest amount of UMF is obtained in an eleven-rotor-pole machine. Similarly, it is observed that the machines having an even number of rotor poles exhibit a negligible amount of UMF compared to the ones of the odd number of rotor poles.

Go to article

Authors and Affiliations

Chukwuemeka Chijioke Awah
ORCID: ORCID
Ogbonnaya Inya Okoro
Edward Chikuni
Download PDF Download RIS Download Bibtex

Abstract

The distortion of air gap magnetic field caused by the rotor eccentricity contributes to the electromechanical coupling vibration of the brushless DC (BLDC) permanent magnet in-wheel motor (PMIWM) in electric vehicles (EV). The comfort of the BLDC in-wheel motor drive (IWMD) EV is seriously affected. To deeply investigate the electromechanical coupling vibration of the PMIWM under air gap eccentricity, the PMIWM, tyre and road excitation are analyzed first. The influence of air gap eccentricity on air gap magnetic density is investigated. The coupling law of the air gap and the unbalanced magnetic force (UMF) is studied. The coupling characteristics of eccentricity rate, air gap magnetic density, UMF, phase current and vibration acceleration are verified on the test bench in the laboratory. The mechanism of the electromechanical coupling vibration of the BLDC PMIWM under air gap static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE) is revealed. DE and HE deteriorate the vibration acceleration amplitude, which contributes the electromechanical coupling vibration of the PMIWM. The research results provide a solid foundation for the vibration and noise suppression of the PMIWM in distributed drive EV.

Go to article

Authors and Affiliations

Y. Li
H. Wu
X. Xu
Y. Cai
X. Sun
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibilities for developing a pole-changing winding with a pole ratio of 3:4 with improved electromagnetic properties. Such a winding can be used in two-speed induction motors for turbo mechanisms. The scheme of the new winding was obtained by using a discretely-specified spatial function method developed at the Tashkent State Technical University. A comparison of the parameters obtained for a similar winding received by the pole amplitude modulation method has been presented. Design of a new motor with a new winding is developed based on the standard induction motor. The paper presents results of laboratory tests, too.
Go to article

Authors and Affiliations

Makhsud Bobojanov
1
ORCID: ORCID

  1. Tashkent State Technical University, 2 University str., 100095, Uzbekistan

This page uses 'cookies'. Learn more