Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article describes a test stand with a spindle equipped with an active bearing preload system using piezoelectric actuators. The proper functioning of the spindle and the active system was associated with the correct alignment of the spindle shaft and the drive motor. The article presents two methods of shaft alignment. The use of commonly known shaft alignment methods with dial indicators is insufficient from the viewpoint of being able to control this preload. This work aims at making the readers aware that, for systems with active bearing preload, the latest measuring devices should be used to align the shaft. The use of commonly known methods of equalization with dial gauges is insufficient from the point of view of controlling this preload. Increasing the accuracy of shaft alignment from 0.1 to 0.01 mm made it possible to obtain a 50% reduction in the displacement of the outer bearing ring during spindle operation.

Go to article

Bibliography

[1] F. Chen and G. Liu. Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator. The International Journal of Advanced Manufacturing Technology, 89(1–4):691–700, 2017. doi: 10.1007/s00170-016-9118-y.
[2] A.H. Hadi Hosseinabadi and Y. Altintas. Modelling and active damping of structural vibrations in machine tools. CIRP Journal of Manufacturing Science and Technology, 7(3):246–257, 2014. doi: 10.1016/j.cirpj.2014.05.001.
[3] Y.K. Hwang and Ch.M. Lee. Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet. International Journal of Machine Tools and Manufacture, 50(3):253–259, 2010. doi: 10.1016/j.ijmachtools.2009.12.002.
[4] G. Quintana, J. de Ciurana, and F.J. Campa. Machine tool spindles. In: L.N. Lopez de Lacalle and Lamikiz (Eds.) Machine Tools for High Performance Machining, chapter 3, pages 75–126, Springer–Verlag, London, 2009.
[5] J. Sikorski and W. Pawłowski. Innovative designs of angular contact ball bearings systems preload mechanisms. Mechanik, 92(2):138–140, 2018. doi: 10.17814/mechanik.2018.2.29.
[6] J.S. Chen and K.W. Chen. Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools and Manufacture, 45(12-13):1487–1493, 2005. doi: 10.1016/j.ijmachtools.2005.01.024.
[7] P. Harris, B. Linke, and S. Spence. An energy analysis of electric and pneumatic ultra-high speed machine tool spindles. Procedia CIRP, 29:239–244, 2015.
[8] J. Dwojak and M. Rzepiela. Vibration Diagnostics of Machines and Devices. 2nd ed. Wyd. Biuro Gamma, Warsaw, Poland, 2005. (in Polish).
[9] G. Hagiu and B. Dragan. Feedback preload systems for high speed rolling bearings assemblies. The Annals of University Dunarea De Jos of Galati Fascicle VIII, 43–47, 2004.
[10] J. Kosmol and K. Lehrich. Electro spindle thermal model. Modelowanie Inżynierskie, 39:119–126, 2010. (in Polish).
[11] J. Vyroubal. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precision Engineering, 36(1):121–127, 2012. doi: 10.1016/j.precisioneng.2011.07.013.
[12] J. Piotrowski. Shaft Alignment Handbook. 3rd edition. CRC Press, Boca Raton, 2006.
[13] S. Szymaniec. Research, Operation and Diagnostics of Machine Sets with Squirrel Cage Induction Motors. Wyd. Oficyna Wydawnicza Politechniki Opolskiej, Studia i Monografie, 333, Opole 2013. (in Polish).
[14] K.P. Anandan and O.B. Ozdoganlar. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles. Precision Engineering, 43:119–131, 2016. doi: 10.1016/j.precisioneng.2015.07.002.
[15] Z. Plutecki, S. Szymaniec, and J. Smykała. A new method for setting industrial drives. Zeszyty problemowe – maszyny elektryczne, 2(102), 201–207, 2014. (in Polish).
[16] J. Dwojak. The use of a laser to determine the alignment of machine shafts is a revolution in alignment. Transport Przemysłowy, 3, 2005. (in Polish).
[17] Shaft alignment, a professional system for measuring and aligning rotor machines. The Easy Laser Catalog. (in Polish).
[18] H. Krzemiński–Freda. Rolling Bearings. PWN, Warszawa, 1985. (in Polish).
[19] S. Waczyński. Shaft bearing using angular contact roller bearings and elastic element. Problems of unconventional bearing systems. A collection of Conference Works edited by J. Burcan, Łódź, 71–74, 1995. (in Polish).
[20] A. Parus, M. Pajor, and M. Hoffmann. Suppression of self-excited vibration in cutting process using piezoelectric and electromagnetic actuators. Advances in Manufacturing Science and Technology, 33(4):35–50, 2009.
[21] Operating Manual, Universal Amplifier QuantumX MX840A HBM, 2011.
[22] W. Modrzycki. Identification and compensation of machine tool errors. Inżynieria Maszyn, 13(3-4):91–100, 2008. (in Polish).
[23] P. Turek, W. Skoczyński, and M. Stembalski. Comparison of methods for adjusting and controlling the preload of angular-contact bearings. Journal of Machine Engineering. 16(2):71–85, 2016.
Go to article

Authors and Affiliations

Paweł Turek
1
Marek Stembalski
1

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland.
Download PDF Download RIS Download Bibtex

Abstract

A laser measurement system for measuring straightness and parallelism error using a semiconductor laser was proposed. The designing principle of the developed system was analyzed. Addressing at the question of the divergence angle of the semiconductor laser being quite large and the reduction of measurement accuracy caused by the diffraction effect of the light spot at the longworking distance, the optical structure of the system was optimized through a series of simulations and experiments. A plano-convex lens was used to collimate the laser beam and concentrate the energy distribution of the diffraction effect. The working distance of the system was increased from 2.6 m to 4.6 m after the optical optimization, and the repeatability of the displacement measurement is kept within 2.2 m in the total measurement range. The performance of the developed system was verified by measuring the straightness of a machine tool through the comparison tests with two commercial multi-degree-of-freedom measurement systems. Two different measurement methods were used to verify the measurement accuracy. The comparison results show that during the straightness measurement of the machine tool, the laser head should be fixed in front of the moving axis, and the sensing part should move with the moving table of the machine tool. Results also show that the measurement error of the straightness measurement is less than 3 m compared with the commercial systems. The developed laser measurement system has the advantages of high precision, long working distance, low cost, and suitability for straightness and parallelism error measurement.
Go to article

Bibliography

[1] Schwenke, H., Knapp, W., & Haitjema, H. (2008). Geometric error measurement and compensation of machines – an update. CIRP Annals, 57(2), 660–675. https://doi.org/10.1016/j.cirp.2008.09.008
[2] Chen, Z., & Liu, X. (2020). A Self-adaptive interpolation method for sinusoidal sensors. IEEE Transactions on Instrumentation and Measurement, 69(10), 7675–7682. https://doi.org/10.1109/ TIM.2020.2983094
[3] Acosta, D., & Albajez, J. A. (2018). Verification of machine tools using multilateration and a geometrical approach. Nanomanufacturing and Metrology, 1(1), 39–44. https://doi.org/10.1007/ s41871-018-0006-y
[4] Chen, B. Y., Zhang, E. Z., & Yan, L. P. (2009). A laser interferometer for measuring straightness and its position based on heterodyne interferometry. Review of Scientific Instruments, 80(11), 115113. https://doi.org/10.1063/1.3266966
[5] Zhu, L. J., Li, L., Liu, & J. H. (2009). A method for measuring the guideway straightness error based on polarized interference principle. International Journal of Machine Tools and Manufacture, 49(3–4), 285–290. https://doi.org/10.1016/j.ijmachtools.2008.10.009
[6] Lin, S. T. (2001). A laser interferometer for measuring straightness. Optics & Laser Technology, 33(3), 195–199. https://doi.org/10.1016/S0030-3992(01)00024-X
[7] Jywe, W. Y., Liu, C. H., Shien, W. H., Shyu, L. H., & Fang, T. H. (2006). Development of a multidegree of freedoms measuring system and an error compensation technique for machine tools. Journal of Physics Conference Series, 48(1), 761–765. https://doi.org/10.1088/1742-6596/48/1/144
[8] Feng, Q. B., Zhang, B. & Cui, C. X. (2013). Development of a simple system for simultaneous measuring 6DOF geometric motion errors of a linear guide. Optics Express, 21(22), 25805–25819. https://doi.org/10.1364/OE.21.025805
[9] Liu, C. H., Chen, J. H., & Teng, Y. F. (2009). Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage. Review of Scientific Instruments, 80(11), 115105. https://doi.org/10.1063/1.3254018
[10] Fan, K. C. (2000). A laser straightness measurement system using optical fiber and modulation techniques. International Journal of Machine Tools Manufacture, 40(14), 2073–2081. https://doi.org/ 10.1016/S0890-6955(00)00040-7
[11] Hsieh, T. H., Chen, P. Y., & Jywe, W. Y. (2019). A geometric error measurement system for linear guideway assembly and calibration. Applied Sciences, 9(3), 574. https://doi.org/10.3390/app9030574
[12] Ni, J., & Huang, P. S. (1992). A multi-degree-of-freedom measuring system for CMM geometric errors. Journal of Manufacturing Science and Engineering, 114(3), 362–369. https://doi.org/10.1115/1.2899804
[13] Rahneberg, I., & Büchner, H. J. (2009). Optical system for the simultaneous measurement of twodimensional straightness errors and the roll angle. Proceedings of the International Society for Optics and Photonics, the Czech Republic, 7356. https://doi.org/10.1117/12.820634
[14] Chou, C., Chou, L. Y. & Peng, C. K. (1997). CCD-based CMM geometrical error measurement using Fourier phase shift algorithm. International Journal of Machine Tools and Manufacture, 37(5): 579–590. https://doi.org/10.1016/S0890-6955(96)00078-8
[15] Sun, C., Cai, S., & Liu, Y. (2020). Compact laser collimation system for simultaneous measurement of five-degree-of-freedom motion errors. Applied Sciences, 10(15), 5057. https://doi.org/10.3390/app10155057
[16] Huang, Y., Fan, Y., Lou, Z., Fan, K. C., & Sun, W. (2020). An innovative dual-axis precision level based on light transmission and refraction for angle measurement. Applied Sciences, 10(17), 6019. https://doi.org/10.3390/app10176019
[17] Born M., & Wolf E. (2013). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier. https://www.sciencedirect.com/book/9780080264820/ principles-of-optic
Go to article

Authors and Affiliations

Peng Xu
1
Rui Jun Li
1
Wen Kai Zhao
1
Zhen Xin Chang
1
Shao Hua Ma
1
Kuang Chao Fan
1

  1. Hefei University of Technology, School of Instrument Science and Opto-Electronics Engineering, Hefei, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of studies on linear synchronous motors controlled in CNC feed axes through an intelligent digital servodrive. The research includes a conceptual design of an open servodrive control system and identification of dynamic models of a test stand with an open CNC system. Advantages of robust control over the classic one are discussed. A hybrid predictive approach to robust control of milling machine X-Y table velocity is proposed and results of simulation tests are presented. Was prepared during the work for the Ministry of Science and Higher Education grant number N N502 336936, (acronym for this project is M.A.R.I.N.E. multivariable hybryd ModulAR motIon coNtrollEr), while its main purpose is the development of new rob ust position/velocity model-based control system, as well as to introduce the measurement of the actual state into the switching algorithm between the locally synthesized controllers. Such switching increases the overall robustness of the machine tool feed-drive module. The paper is the extended version of material proposed in [10].

Go to article

Authors and Affiliations

Krzysztof Pietrusewicz
Download PDF Download RIS Download Bibtex

Abstract

The touch trigger probe plays an important role in modern metrology because of its robust and compact design with crash protection, long life and excellent repeatability. Aside from coordinate measuring machines (CMM), touch trigger probes are used for workpiece location on a machine tool and for the accuracy assessment of the machine tools. As a result, the accuracy of the measurement is a matter of interest to the users. The touch trigger probe itself as well as the measuring surface, the machine tool, measuring environment etc. contribute to measurement inaccuracies. The paper presents the effect of surface irregularities, surface wetness due to cutting fluid and probing direction on probing accuracy on a machine tool.

Go to article

Authors and Affiliations

Md. Mizanur Rahman
J.R.R. Mayer
Download PDF Download RIS Download Bibtex

Abstract

The sequential multilateration principle is often adopted in geometric error measurement of CNC machine tools. To identify the geometric errors, a single laser tracker is placed at different positions to measure the length between the target point and the laser tracker. However, the measurement of each laser tracker position is not simultaneous and measurement accuracy is mainly subject to positioning repeatability of the machine tool. This paper attempts to evaluate the measurement uncertainty of geometric errors caused by the positioning repeatability of the machine tool and the laser tracker spatial length measurement error based on the Monte Carlo method. Firstly, a direct identification method for geometric errors of CNC machine tools based on geometric error evaluation constraints is introduced, combined with the geometric error model of a three-axis machine tool. Moreover, uncertainty contributors caused by the repeatability of positioning of numerically controlled axes of the machine tool and the laser length measurement error are analyzed. The measurement uncertainty of the geometric error and the volumetric positioning error is evaluated with the Monte Carlo method. Finally, geometric error measurement and verification experiments are conducted. The results show that the maximum volumetric positioning error of the machine tool is 84.1 μm and the expanded uncertainty is 5.8 μm (�� = 2). The correctness of the geometric error measurement and uncertainty evaluation method proposed in this paper is verified compared with the direct geometric error measurement methods.
Go to article

Authors and Affiliations

Xingbao Liu
1
Yangqiu Xia
1
Xiaoting Rui
1

  1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
Download PDF Download RIS Download Bibtex

Abstract

The field of mechanical manufacturing is becoming more and more demanding on machining accuracy. It is essential to monitor and compensate the deformation of structural parts of a heavy-duty machine tool. The deformation of the base of a heavy-duty machine tool is an important factor that affects machining accuracy. The base is statically indeterminate and complex in load. It is difficult to reconstruct deformation by traditional methods. A reconstruction algorithm for determining bending deformation of the base of a heavy-duty machine tool using inverse Finite Element Method (iFEM) is presented. The base is equivalent to a multi-span beam which is divided into beam elements with support points as nodes. The deflection polynomial order of each element is analysed. According to the boundary conditions, the deformation compatibility conditions and the strain data measured by Fiber Bragg Grating (FBG), the deflection polynomial coefficients of a beam element are determined. Using the coordinate transformation, the deflection equation of the base is obtained. Both numerical verification and experiment were carried out. The deflection obtained by the reconstruction algorithm using iFEM and the actual deflection measured by laser displacement sensors were compared. The accuracy of the reconstruction algorithm is verified.

Go to article

Authors and Affiliations

Mingyao Liu
Xiong Zhang
Han Song
Jingliang Wang
Shiguang Zhou
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the influence of the machining operation on a surface, which disturbs the projection of the tool profile in the form of its relative movements with respect to the object. The elements of the machine tool undergo constant wear during the machining process, it is therefore important to recognize the effects of their influence on the surface's irregularities. Amplitude-frequency analysis of lateral profiles has been used to evaluate and changes of turned lateral profiles. The results of simulation of radial and axial effects of the machine tool on surface and their spectral components were analyzed. Surfaces obtained in similar machining conditions on lathes operated in various time periods were analyzed spectrally. From the analysis of surface irregularity changes caused by disturbances in movements of the tool against the object, testifying the wear of main machine elements during its operation, the modulated, amplitude-frequency character of changes in surface irregularities of workpiece can be noticed.

Go to article

Authors and Affiliations

Adam Boryczko
Download PDF Download RIS Download Bibtex

Abstract

Today’s manufacturing environment is highly uncertain, and it is continuously changing. It

is characterized by shorter life cycles of products and technologies, shorter delivery times, an

increased level of customization at the price of a standard product, increased product variety,

quality as well as demand variability and intense global competition. Academicians, as well as

practitioners, agree that uncertainty will continue to grow in the twenty-first century. To deal

with the uncertainties in demand variation and production capacity a manufacturing system

is required which can be easily reconfigured when there is a need at low cost. A reconfigurable

manufacturing system is such a type of system.

In the present work, the concept of the reconfigurable manufacturing system has been discussed

and reviewed. It has been compared with dedicated systems and flexible manufacturing

systems. Part family formation and barriers of reconfiguration also have been discussed.

This work is an attempt to contribute to the conceptual systematization of the reconfigurable

manufacturing system and reconfigurability by synthesizing the vast literature available after

a systematic review.

Go to article

Authors and Affiliations

Durga Prasad
S.C. Jayswal
Download PDF Download RIS Download Bibtex

Abstract

The machining accuracy of CNC machine tools is significantly affected by the thermal deformation of the feed system. The ball screw feed system is extensively used as a transmission component in precise CNC machine tools, responsible for converting rotational motion into linear motion or converting torque into repetitive axial force. This study presents a multi-physical coupling analysis model for the ball screw feed system, considering internal thermal generation, intending to reduce the influence of screw-induced thermal deformation on machining accuracy. This model utilizes the Fourier thermal conduction law and the principle of energy conservation. By performing calculations, the thermal source and thermal transfer coefficient of the ball screw feed system are determined. Moreover, the thermal characteristics of the ball screw feed system are effectively analyzed through the utilization of finite element analysis. To validate the proposed analysis model for the ball screw feed system, a dedicated test platform is designed and constructed specifically to investigate the thermal characteristics of the ball screw feed system in CNC machine tools. By selecting specific CNC machine tools as the subjects of investigation, a comprehensive study is conducted on the thermal characteristics of the ball screw feed system. The analysis entails evaluating parameters like temperature field distribution, thermal deformation, thermal stress, and thermal equilibrium state of the ball screw feed system. By comparing the simulation results from the analysis model with the experimental test results, the study yields the following findings: The maximum absolute error between the simulated and experimental temperatures at each measuring point of the feed system components is 2.4◦C, with a maximum relative error of 8.7%. The maximum absolute error between the simulated and experimental temperatures at the measuring point on the lead screw is 2.0◦C, with a maximum relative error of 6.8%. The thermal characteristics obtained from the steady-state thermal analysis model of the feed system exhibit a prominent level of agreement with the experimental results. The research outcomes presented in this paper provide valuable insights for the development of ball screw feed systems and offer guidance for the thermal design of machine tools.
Go to article

Authors and Affiliations

Junjian Zheng
1
ORCID: ORCID
Xiaolei Deng
2
Junshou Yang
2
Wanjun Zhang
2
Xiaoliang Lin
2
Shaofei Jiang
1
Xinhua Yao
3
Hongchen Shen
3

  1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
  2. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
  3. School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of FluidPower and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

This page uses 'cookies'. Learn more