Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Designing, optimizing and analyzing optical systems as part of the implementation process into production of modern luminaires require using advanced simulation and computational methods. The progressive miniaturization of LED (light emitting diode) chips and growth in maximum luminance values, achieving up to 108 cd/m2, require constructing very accurate geometries of reflector and lens systems producing complex luminous intensity distributions while reducing discomfort glare levels. Currently, the design process cannot function without advanced simulation methods. Today’s simulation methods in the lighting technology offer very good results as far as relatively large conventional light sources such as halogen lamps, metal halide lamps and high pressure sodium lamps are concerned. Unfortunately, they often fail in the case of chip-on-board LED light sources whose luminous surface dimensions are increasingly often contained inside a cube of the side length below 1mm. With the high sensitivity of such small chips and lenses with dimensions ranging from a just a few to between 10 and 20 mm, which is presented in this paper, modern luminance distribution measurement methods, luminance modelling and ray tracing methods should be used to minimize any errors arising from incorrectly projecting the design in the final physical model. Also, very importantly, focus should be directed towards reducing a chance of making a mistake while collimating the position of the light source inside the optical system. The paper presents a novel simulation calculation method enriched with an analysis of optical system sensitivity to a light source position. The results of simulation calculations are compared with the results of laboratory measurements for corresponding systems.

Go to article

Authors and Affiliations

S. Słomiński
Download PDF Download RIS Download Bibtex

Abstract

Rapid development of computing and visualisation systems has resulted in an unprecedented capability to display, in real time, realistic computer-generated worlds. Advanced techniques, including three-dimensional (3D) projection, supplemented by multi-channel surround sound, create immersive environments whose applications range from entertainment to military to scientific. One of the most advanced virtual reality systems are CAVE-type systems, in which the user is surrounded by projection screens. Knowledge of the screen material scattering properties, which depend on projection geometry and wavelength, is mandatory for proper design of these systems. In this paper this problem is addressed by introducing a scattering distribution function, creating a dedicated measurement setup and investigating the properties of selected materials used for rear projection screens. Based on the obtained results it can be concluded that the choice of the screen material has substantial impact on the performance of the system

Go to article

Authors and Affiliations

Adam Mazikowski
Michał Trojanowski
Download PDF Download RIS Download Bibtex

Abstract

The application of solid-state light sources in luminaires creates a new quality in illumination design works. In a confrontation with a commonly used but relatively unattractive flood method, the use of small-size luminaires allows one to present an illuminated architectural object in a more attractive way in the evening and at night. In this case, it is possible to apply the principles of illumination described in the literature, especially the principle of height amplification and the principle of depth amplification. The conceptual work of illumination with the use of a large number of small-size luminaires does not require the use of supporting graphical tools, but the specification of actual lighting equipment using only polygonal samples in this case is not possible. The paper presents selected issues of the key stages of the completed work. Using specialized computer software, a geometric model of the architectural object has been developed, facade materials have been parameterized, models of small-size illuminating equipment have been selected and, finally, calculations of luminance distribution on illuminated surfaces have been carried out. As a result of computer work, luminance distributions and photorealistic visualizations of illuminations from defined main directions of observation were obtained. The Lubomirski Palace in Przemysl is an example of the architectural object indicated for detailed works.
Go to article

Authors and Affiliations

Antoni Różowicz
1
ORCID: ORCID
Henryk Wachta
2
Sebastian Różowicz
1
ORCID: ORCID

  1. Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
  2. Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an effective way to design asymmetrical optics for a uniform vertical surface illumination was presented. Assessment of the obtained distribution of luminance (illuminance) on the illuminated surface is done almost at the same time as designing the optical system elements. Advantage of the final application of the presented method in 3D will be independence from the implementation of time-consuming simulations in order to verify the already designed optics. Understanding the method and its application is simple and intuitive. Observing the luminance distribution, created on the illuminated surface almost at the same time as its design, allows to see the effect of adding the next elements of the optical system on this distribution.

Go to article

Authors and Affiliations

K. Kubiak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents modern methods for designing optical systems for luminaires in the context of long years of light sources development. It shows that the development of technology for producing increasingly precise optical systems has led to an evolution in the construction of luminaires with increased efficacy and utilizing more efficiently the features of a specific family of light sources. Methods for designing and modelling optical systems with the use of mathematical curves as well as advanced the free-forming method are described. The paper also shows methods for modelling light sources features, especially luminance ones, designed to make precise simulation calculations required in any luminaire design process. Knowledge of luminance distributions of light sources and precise luminance distributions of optical systems for luminaires raises the design process to a very high level, enabling positive modern light source features, such as high luminance and their small dimensions, to be used consciously while minimizing negative ones, such as discomfort glare, caused by luminaires. The paper presents the results of simulation calculations and laboratory measurements for a selected case of luminaire equipped with a discharge lamp of maximum luminance exceeding 30 million cd/m2.

Go to article

Authors and Affiliations

W. Żagan
S. Zalewski
S. Słomiński
K. Kubiak
ORCID: ORCID

Authors and Affiliations

Sebastian Słomiński
1
ORCID: ORCID

  1. Warsaw University of Technology, Institute of Electrical Power Engineering, Lighting Technology Division, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents selected results of research on improving pedestrian traffic safety. Based on annually-updated accident statistics made available by the police, as well as the new pedestrian traffic regulations in force, detailed work was undertaken to assess the level of visibility of pedestrians by drivers in pedestrian crossing areas. The research was carried out by analyzing several characteristic cases of pedestrian crossings occurring in Poland, in which there was only dedicated lighting for crossings, only street lighting, and a variant of coexistence of both of the above lighting solutions. Illuminance measurements were made in the horizontal and vertical planes of pedestrian crossings, and the results were confronted with the relevant guidelines. The next step involved a complementary measurement of the luminance distribution of the vertical plane containing the pedestrian and a portion of the sub- and super-horizontal background. Visibility pedestrians was considered in positive and negative contrast variants, and was then related to the obtained results of the illumination distribution. The analysis of the results of the study indicated the possibility of limited visibility of pedestrians at the crossings despite the satisfactory results obtained from measurements of the illuminance distribution within the crossings.
Go to article

Authors and Affiliations

Sebastian Różowicz
1
ORCID: ORCID
Krzysztof Baran
2
ORCID: ORCID
Antoni Różowicz
1
ORCID: ORCID
Marcin Leśko
2
ORCID: ORCID
Lubomír Beňa
3
ORCID: ORCID

  1. Department of Industrial Electrical Engineering and Automatic Control Kielce University of Technology Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  2. Department of Power Electronics and Power Engineering, Rzeszow University of Technology Wincentego Pola 2, 35-959 Rzeszow, Poland
  3. Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics (FEI) Technical University of Kosice, Letna 9, Kosice, 040 01, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

In recent years, many scientific and industrial centres in the world developed a virtual reality systems or laboratories. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system. In this paper, problems of luminance distribution uniformity in CAVE-type virtual reality systems are analyzed. For better characterization of CAVE luminance nonuniformity corner and edge CAVE nonuniformity were introduced. Based on described CAVE-type virtual reality laboratory, named Immersive 3D Visualization Lab (I3DVL) just opened at the Gdansk University of Technology, luminance nonuniformity of the system is evaluated and discussed. Data collection of luminance distribution allows for software compensation of intensity distribution of individual images projected onto the screen (luminance non-uniformity minimization) in the further research.

Go to article

Authors and Affiliations

A. Mazikowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a simple method of measuring the luminous flux value dedicated to LED light sources. This method uses information about a spatial radiation pattern of the lighting source under test and the results of illuminance measurements at the axis of this source. The method is described and the results of the measurements obtained using this method and the classical method are compared and discussed. Tests have been carried out for LED modules of different geometries. The measurement error of the considered method is analysed.
Go to article

Authors and Affiliations

Krzysztof Górecki
1
ORCID: ORCID
Aleksandra Kalinowska
2
Przemysław Ptak
1
ORCID: ORCID

  1. Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  2. Faculty of Electrical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Jarosław Zygarlicki
Małgorzata Zygarlicka
Janusz Mroczka
Download PDF Download RIS Download Bibtex

Abstract

This article is focused on considerations based on experimental studies concerning changes of selected parameters of identical compact fluorescent lamps (CFLs) intended for use in buildings during their operation. The studies constituted a long-term experiment whose goal was an evaluation of selected operating parameters of the CFLs in terms of meeting the requirements set out in the specified regulations as well as the issue of marking the lamps with the energy efficiency class. The measurements were performed with the authors’ experimental setup consisting of original equipment designed and made especially for the purpose of the measurements. The studies covered registration of the luminous flux as well as selected electrical parameters such as active power, current and the power factor during the so-called “start-up time” and operation time equal to 100 h, 500 h, 1000 h, 2000 h, etc. with a 1000 h step. The studies were finished with the moment of natural burnout of the CFLs tested. The results showed that the biggest drawback of CFLs is lack of preservation of the required time to reach 60% of the stabilized luminous flux just after short time of lamp operation. Similarly when assessing the conformity of the parameters declared by the manufacturer that have been verified, it can be stated that they are true only at the initial stage of lamp operation.

Go to article

Authors and Affiliations

Przemysław Tabaka
ORCID: ORCID
Paweł Rózga

This page uses 'cookies'. Learn more