Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the feasibility, effectiveness and validity of a gas turbine power plant, operated according to the Brayton comparative cycle in order to develop low-potential waste heat (160◦C) and convert it into electricity. Fourteen working fluids, mainly with organic origin have been examined. It can be concluded that low molecular weight working fluids allow to obtain higher power efficiency of Brayton cycle only if conversions without taking into account internal losses are considered. For the cycle that takes into account the compression conversion efficiency in the compressor and expansion in the gas turbine, the highest efficiency was obtained for the perfluoropentane working medium and other substances with relatively high molecular weight values. However, even for the cycle using internal heat recovery, the thermal efficiency of the Brayton cycle did not exceed 7%.The paper discusses the feasibility, effectiveness and validity of a gas turbine power plant, operated according to the Brayton comparative cycle in order to develop low-potential waste heat (160◦C) and convert it into electricity. Fourteen working fluids, mainly with organic origin have been examined. It can be concluded that low molecular weight working fluids allow to obtain higher power efficiency of Brayton cycle only if conversions without taking into account internal losses are considered. For the cycle that takes into account the compression conversion efficiency in the compressor and expansion in the gas turbine, the highest efficiency was obtained for the perfluoropentane working medium and other substances with relatively high molecular weight values. However, even for the cycle using internal heat recovery, the thermal efficiency of the Brayton cycle did not exceed 7%.
Go to article

Authors and Affiliations

Aleksandra Borsukiewicz
Piotr Stawicki
Download PDF Download RIS Download Bibtex

Abstract

The Stirling engine type alpha is composed of two cylinders (expansion space E and compression space C), regenerator that forms the space between the cylinders and the buffer space (under the pistons). Before the start-up and as a result of long-term operation, the average pressure in the working space (above the pistons) and in the buffer space is the same. However, in the initial phase of operation, the average pressure in the working space is different then the average pressure in the buffer space depending on the crankshaft starting position (starting angle). This, in turn, causes a large variation in the starting torque. An additional unfavorable factor caused by a large variation in the course of the indicated torque is the rotational speed variation and the formation of torsional vibrations in the drive system. After some time, depending on the quality of the engine piston sealing, the average pressure in the working and buffer space will equalize. The occurrence of the above-described phenomenon affects the selection of the starting electric motor, which can be significantly reduced, when the crankshaft starting position is optimized (the starting torque is several times greater than the average torque occurring in the generator operation mode). This paper presents the analysis of the impact of the crankshaft starting position on the course of the indicated torque and the resulting start-up energy. Starting the engine at an unfavorable position of the crankshaft may, in extreme cases, increase the starting torque even three times.

Go to article

Authors and Affiliations

Jacek Kropiwnicki
Download PDF Download RIS Download Bibtex

Abstract

In this paper the current status of microplasma devices and systems made in the LTCC technology is presented. The microplasma characteristics and applications are described.We discuss the properties of the LTCC materials, that are necessary for reliable operation of the sources. This material is well known for its good reliability and durability in harsh conditions. Still, only a few examples of such microplasma sources are described. Some of them have been developed by the authors and successfully used for chemical analysis and synthesis.

Go to article

Authors and Affiliations

Jan Macioszczyk
Leszek Golonka
Download PDF Download RIS Download Bibtex

Abstract

Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5°C with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40°C, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

Go to article

Authors and Affiliations

Robert Sekret
Anna Nitkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented research was to test different carbon supports, such as graphene oxide (GO), graphene oxide modified with ammonia (N-GO), and reduced graphene oxide (rGO) for catalysts used in a low-temperature fuel cell, specifically a proton exchange membrane fuel cell (PEMFC). Modification of the carbon supports should lead to different catalytic activity in the fuel cell. Reduction of GO leads to partial removal of oxygen groups from GO, forming rGO. Modification of GO with ammonia results in an enrichment of GO structure with nitrogen. A thorough analysis of the used supports was carried out, using various analytical techniques, such as FTIR spectroscopy and thermogravimetric (TGA) analysis. Palladium and platinum catalysts deposited on these supports were produced and used for the oxygen reduction reaction (ORR). Catalytic activity tests of the prepared catalysts were carried out in a home-made direct formic acid fuel cell (DFAFC). The tests showed that the enrichment of the GO structure with nitrogen caused an increase in the catalytic activity, especially for the palladium catalyst. However, reduction of GO resulted in catalysts with higher activity and the highest catalytic activity was demonstrated by Pt/rGO, because platinum is the most catalytically active metal for ORR. The obtained results may be significant for low-temperature fuel cell technology, because they show that a simple modification of a carbon support may lead to a significant increase of the catalyst activity. This could be useful especially in lowering the cost of fuel cells, which is an important factor, because thousands of fuel cells running on hydrogen are already in use in commercial vehicles, forklifts, and backup power units worldwide. Another method used for lowering the price of current fuel cells can involve developing new clean and cheap production methods of the fuel, i.e. hydrogen. One of them employs catalytic processes, where carbon materials can be also used as a support and it is necessary to know how they can influence catalytic activity.

Go to article

Authors and Affiliations

Zuzanna Bojarska
Marta Mazurkiewicz-Pawlicka
Łukasz Makowski
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the impact of co-firing biomass with coal in boilers on the dew point of the flue gas. Co-firing of biomass may have twofold implications on corrosion and fouling, which are the processes that determine the lowest acceptable flue gas outlet temperature and as a result, boiler efficiency. Both phenomena may be reduced by co-firing of usually low sulphur biomasses or enhanced due to increased moisture content of biomass leading to increased water dew point. The present study concerns the problem of low-temperature corrosion in utility boilers. The paper gives (in the form of diagrams and equations) a relationship between water dew point and moisture content of fuel mixture when co-firing coal and various biomasses. The regression analysis shows that despite significant differences in the characteristics of coals and these of additional fuels, which are planned for co-firing in large-scale power boilers, the water dew point can be described by a function given with the accuracy, which shall be satisfactory for engineering purposes. The discussion of the properties of biofuels indicates that the acid dew point surplus over the water dew point (Δtr = tr - twr) is not likely to exceed 10 K when co-firing biomass. The concluding remarks give recommendations for the appropriate operation of boilers in order to reduce risks associated with biomass co-combustion.

Go to article

Authors and Affiliations

Szymon Ciukaj
Marek Pronobis
Download PDF Download RIS Download Bibtex

Abstract

Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE) against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air) in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes). After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3)°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

Go to article

Authors and Affiliations

Katarzyna Majchrzycka
Małgorzata Okrasa
Agnieszka Brochocka
Wiesława Urbaniak-Domagała
Download PDF Download RIS Download Bibtex

Abstract

Two standardised grades of spheroidal cast iron determined in standard EN PN 1563 – 1997 as: EN-GJS-350 – 22LT (T = –40°C) and EN GJS 400 – 18LT (T = –20°C) are intended for work at low temperatures: –20 and –40oC. The main mechanical property of these cast iron grades is a high impact strength at a work temperature down to: –40°C. A series of controlled melts was performed to optimise the production technology of spheroidal cast iron, which in as-cast state is characterised by ferritic matrix (the best without any pearlite), fine precipitates of nodular graphite and high purity (without non-metallic inclusions). Variable structures of metal charges and various spheroidisation techniques (the modification methods) (slender ladle with a tight cover – Tundish technology as well as the technology with cored wire) were applied in the research. In order to obtain refinement of graphite precipitates and to achieve the ferritic matrix multistage inoculations of technologies were applied. Cast iron was subjected to refining to limit non-metallic inclusions since they decrease the impact strength. The production process of cast iron was controlled by the thermal derivative analysis at the stage of initial cast iron and after its secondary metallurgy (modification and inoculation). It was pointed out, that the reproducible production of cast iron for work at low temperatures was only possible when all elements of the technological process were strictly adhered to. It was pointed out, in the hereby paper, that: it should be strived to maintain Si content not higher than 2.50÷2.60%, which at producing spheroidal cast iron is sometimes difficult and requires using a lot of pig iron in the metal charge. For a fast assessment of the cast iron quality, concerning its impact strength, the proposed – in the hereby paper – index quality (IQu) can be applied. It is determined on the bases of measuring the cast iron hardness and propagation velocity of ultrasound wave.
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
T. Jurga
2
J. Mocek
1
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Odlewnia Żeliwa Drawski S.A, Drawski Młyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study a two-step short wet etching was implemented for the black silicon formation. The proposed structure consists of two steps. The first step: wet acidic etched pits-like morphology with a quite new solution of lowering the texturization temperature and second step: wires structure obtained by a metal assisted etching (MAE). The temperature of the process was chosen due to surface development control and surface defects limitation during texturing process. This allowed to maintain better minority carrier lifetime compared to etching in ambient temperature. On the top of the acidic texture the wires were formed with optimized height of 350 nm. The effective reflectance of presented black silicon structure in the wavelength range of 300-1100 nm was equal to 3.65%.
Go to article

Authors and Affiliations

G. Kulesza-Matlak
K. Gawlińska
Z. Starowicz
A. Sypień
K. Drabczyk
B. Drabczyk
M. Lipiński
P. Zięba
Download PDF Download RIS Download Bibtex

Abstract

In this paper small punch test (SPT) which is one of miniaturized samples technique, was employed to characterize the mechanical properties of carbon steel P110. The tests were carried out in the range of –175°C to RT. Results obtained for SPT were compared to those calculated for tensile and Charpy impact test. Based on tensile and SPT parameters numerical model was prepared. 8 mm in diameter and 0.8 mm in height (t) discs with and without notch were employed in this research. The specimens had different depth notch (a) in the range of 0.1 to 0.4 mm. It was estimated that α factor for comparison of Tsp and DBTT for carbon steel P110 is 0.55 and the linear relation is DBTT = 0.55TSPT. The numerical model fit with force – deflection curve of SPT. If the factor of notch depth and samples thickness is higher than 0.3 the fracture mode is transformed from ductile to brittle at –150°C.

Go to article

Authors and Affiliations

B. Romelczyk-Baishya
D. Lumelskyj
M. Stępniewska
M. Giżyński
Z. Pakieła
Download PDF Download RIS Download Bibtex

Abstract

Investigations on integration of optoelectronic components with LTCC (low temperature co-fired ceramics) microfluidic module are presented. Design, fabrication and characterization of the ceramic structure for optical absorbance is described as well. The geometry of the microfluidic channels has been designed according to results of the CFD (computational fluid dynamics) analysis. A fabricated LTCC-based microfluidic module consists of an U-shaped microchannel, two optical fibers and integrated light source (light emitting diode) and photodetector (light-to-voltage converter). Properties of the fabricated microfluidic system have been investigated experimentally. Several concentrations of potassium permanganate (KMnO4) in water were used for absorbance/transmittance measurements. The test has shown a linear detection range for various concentrations of heavy metal ions in distilled water. The fabricated microfluidic structure is found to be a very useful system in chemical analysis.

Go to article

Authors and Affiliations

Karol Malecha
Download PDF Download RIS Download Bibtex

Abstract

In this paper a design of millimeter-wave six-port device for LTCC (Low Temperature Cofired Ceramic) technology is presented. Furthermore, problems with implementation of the project taking into account requirements of LTCC technology are discussed.

Go to article

Authors and Affiliations

Barbara Słojewska
Yevhen Yashchyshyn
Download PDF Download RIS Download Bibtex

Abstract

This paper conducts low temperature welding tests on Q460GJC thick plate (60 mm), and based on the basic theory of phase transformation structure evolution, a three-dimensional microstructure evolution analysis method for large welded joints is established, and the analysis of the evolution process of multi-layer and multi-pass weld structure under the low temperature environment of thick plates is completed. The comparison and analysis of test and numerical simulation results are in good agreement, which proves that the welding phase transformation model realizes the digitalization of metallurgical phase transformation in steel structure welding, and optimizes welding process parameters. It is of great significance to improve the quality of welding products and lay a foundation for predicting the performance of welded joints from the micro level.
Go to article

Authors and Affiliations

Xin Li
1
ORCID: ORCID
Meng Wang
1
Han Qi
2
Jie Li
3
Changchun Pan
4
Jing Zhang
3
Jingman Lai
3

  1. Beijing Construction Engineering Group Co., LTD, Beijing, 100032, P.R. China
  2. Beijing Third Construction Engineering Co., LTD, Beijing, 100032, P.R. China
  3. Central Research Institute of Building and Construction Co., Ltd. MCC, Beijing, 100032, P.R. China
  4. China State Shipbuilding International Engineering Co., Ltd. CSIE, Beijing, 100000, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm−3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
Go to article

Authors and Affiliations

Ji Young Park
1
ORCID: ORCID
Ye Bin Weon
1
ORCID: ORCID
Myeong Jun Jung
1
ORCID: ORCID
Byung Joon Choi
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea
Download PDF Download RIS Download Bibtex

Abstract

Proteases play a key role in cell defense mechanisms to cold-induced oxidative stress. Data on the relationship between cold stress, growth phase, and temperature preferences of the fungal strains isolated from different habitats are very scarce. Here, we report changes in the intra- and extracellular protease activity of three fungal Penicillium strains (two Antarctic and one temperate) under transient temperature downshift during exponential- and stationary growth phases. The results indicated enhanced enzyme levels in both growth phases depending on the degree of stress and strain thermal class. In order to explain the obtained data, we compared them with our previous results on the protein carbonyl content, accumulation of oxidative-stress biomarkers, and antioxidant enzyme defense in the same three fungal strains. The cell response was affected by the temperature preference of the strain, but not by the climatic distance between the locations of isolation.
Go to article

Authors and Affiliations

Jeny Miteva-Staleva
1
ORCID: ORCID
Ekaterina Krumova
1
ORCID: ORCID
Boryana Spasova
1
ORCID: ORCID
Maria Angelova
1
ORCID: ORCID

  1. Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev str. 26, 1113 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the mechanical properties and high-temperature sliding wear behaviour of the Al6082-SiC-TiO2 hybrid composite in different environmental conditions produced by the stir-casting process were investigated and distinguished with single-reinforced composites (Al6082-SiC and Al6082-TiO2) and matrix alloy. The microstructure of composites exhibited a reasonably uniform scatter of particles in the aluminium matrix with good bonding between the matrix-particle interfaces. The hybrid composite’s hardness and ultimate tensile strength showed higher hardness and tensile strength than matrix alloy and single-reinforced composites, whereas trends were reversed for the elongation. The impact test of the materials was conducted at different temperatures (room temperature, 0°C, –25°C, –50°C, and –75°C). The hybrid composite shows higher impact strength than the other materials, and impact strength decreases with temperature because ductility decreases with temperature. The fracture surfaces were examined to identify the fracture mechanism. The sliding wear test was conducted at different temperatures (room temperature, 100°C, 175°C, 250°C and 325°C) to distinguish the tribological behaviour of materials. The weight loss of the materials was increased with an increase in temperatures. The hybrid composite shows a lower weight loss than the other condition samples, irrespective of the temperatures. The wear surfaces were examined to predict the material removal mechanism.
Go to article

Authors and Affiliations

Pushpraj Singh
1
ORCID: ORCID
Raj Kumar Singh
2 3
ORCID: ORCID
Anil Kumar Das
1
ORCID: ORCID

  1. National Institute of Technology, Department of Mechanical Engineering, Ashok Rajpath, Mahendru, Patna, Bihar, 800005, India
  2. University Road, Department of Mechanical Engineering, Rewa Engineering College, Rewa, Madhya Pradesh, 486002, India
  3. Vindya Institute of Technology and Science, Mechanical Engineering, Amaudha Kalan, SATNA, MADHYA PRADESH, 485001, India

This page uses 'cookies'. Learn more