Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article proposes a method of assessing information transmission reliability by using the output normalized logarithmic ratio of the likelihood function (LRLF) of the decoder. Based on the evaluation, the method allows adapting system parameters with turbo codes (TC) or LDPC code. This method can be used in combination with other methods of parametric and structural adaptation using turbo codes or LDPC codes.
Go to article

Authors and Affiliations

Vladyslav Vasylenko
1
Serhii Zaitsev
2
Yuliia Tkach
3
Oleksandr Korchenko
4
Ruslana Ziubina
5
Olga Veselska
5

  1. Institute of Telecommunications and Global Information Space of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  2. University of Technology, Kielce, Poland
  3. Chernihiv Polytechnic National University, Chernihiv, Ukraine
  4. Department of Information Technology Security of National Aviation University, Kyiv, Ukraine
  5. Department of Computer Science and Automatics of the University of Bielsko-Biala, Bielsko-Biala, Poland
Download PDF Download RIS Download Bibtex

Abstract

There is an airflow velocity boundary layer near tunnel wall when the air is flowing in the underground coal mine. The thickness and distribution of the airflow velocity boundary layer could influence the discharge of harmful and toxic gases that enter the ventilating airflow through this flow interface. It may also have a major impact in coal mine gas explosion. The results of field measurements and simulation experimental data are used to research airflow velocity boundary layer in a flat walled mine roadway, which is considered in turn: as unsupported, I-steel sectioned arch or bolted and shot create supported cross section. By referenced to other literature studies that consider boundary layer characteristics and the analysis of on-site and experimental data sets we obtain the corresponding airflow velocity boundary layer characteristics for each of the supported roadway sections. The airflow velocity within the boundary layer increase is assumed to follow a logarithmic law given by the expression: u = a Ln(x) + b. It is concluded that the thickness of the airflow velocity boundary layer is observed to significantly decrease with the airflow center velocity and to increase with roadway wall roughness. The airflow velocity distribution is found to be described by the equation: u = (m1v + n1)Ln(d) + m2v + n2, for the three types coal mine tunnel taking into account the influence of center airflow velocity.

Go to article

Authors and Affiliations

Yonghao Luo
Yangsheng Zhao
Download PDF Download RIS Download Bibtex

Abstract

This article is a presentation of the analysis of new class of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback. Development of mathematical models of errors, quantitative assessment of these errors taking into account modern components and assessing the accuracy of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback were presented. (Logarithmic ADC with accumulation of charge and impulse feedback – analysis and modeling).
Go to article

Bibliography

[1] S. Purighalla, B. Maundy, “84-dB Range Logarithmic Digital-to-Analog Converter in CMOS 0.18-μm Technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, 58 (2011), no.5, pp. 279-283
[2] J. Lee, J. Kang, S. Park, J. Seo, J. Anders, J. Guilherme, M. P. Flynn, “A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s Logarithmic Pipeline ADC,” IEEE Journal Of Solid-State Circuits, 44 (2009), no.10, pp. 2755-2765
[3] B. Maundy, D. Westwick, S. Gift, “On a class of pseudo-logarithmic amplifiers suitable for use with digitally switched resistors,” Int. J. of Circuit Theory and Applications, vol. 36 (2008), no.1, pp. 81–108
[4] B. Maundy, D. Westwick, S. Gift, (2007) “A useful pseudo-logarithmic circuit,” Microelectronics International, Vol. 24 Iss: 2, pp.35 - 45
[5] M. Alirieza, L. Jing and J. Dileepan, “Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture,” Sensors, 13(8), pp. 10765-10782, August 2013
[6] J. Guilherme, J. Vital, Jose Franca, “A True Logarithmic Analog-to-Digital Pipeline Convener with 1.5bitistage and Digital Correction,” Proc. IEEE International Conference on Electronics Circuits and Systems, pp. 393-396, Malta 2001
[7] G. Bucci, M. Faccio, C. Landi, “The performance test of a piece-linear A/D converter,” IEEE Instrumentation and Measurement Technology Conference, St. Paul USA May 1998, pp.1223.1228
[8] J. Guilherme, J. Vital, J. Franca, “A CMOS Logarithmic Pipeline A/D Converter with a Dynamic Range of 80 dB,” IEEE Electronics, Circuits and Systems, 2002. 9th International Conference on, (2002), no.3/02, pp. 193-196
[9] J. Sit and R. Sarpeshkar, “A Micropower Logarithmic A/D With Offset and Temperature Compensation,” IEEE J. Solid-State Circuits, 39 (2004), nr. 2, pp. 308-319
[10] J. Mahattanakul, “Logarithmic data converter suitable for hearing aid applications,” Electronic Letters, 41 (2005), no.7, pp. 31-32
[11] S. Sirimasakul, A. Thanachayanont, W. Jeamsaksiri, “Low-Power Current-Mode Logarithmic Pipeline Analog-to-Digital Converter for ISFET based pH Sensor,” IEEE ISCIT, 2009, no.6/09, pp. 1340-1343
[12] M. Santosa, N. Hortaa, J. Guilherme, “A survey on nonlinear analog-to-digital converters,” Integration, the VLSI Journal, Volume 47, Issue 1, pp. 12–22, January 2014
[13] Z.R. Mychuda, “Logarithmic Analog-To-Digital Converters – ADC of the Future,” Prostir, Lviv, Ukraine 2002, pp. 242
[14] A. Szcześniak, Z Myczuda, “A method of charge accumulation in the logarithmic analog-to-digital converter with a successive approximation,” Electrical Review, 86 (2010), no.10, pp. 336-340
[15] A. Szcześniak, U. Antoniw, Ł. Myczuda, Z. Myczuda, „Logarytmiczne przetworniki analogowo-cyfrowe z nagromadzeniem ładunku i impulsowym sprzężeniem zwrotnym,” Electrical Review, R. 89 no. 8/2013, pp. 277 – 281
[16] A. Szcześniak, Z. Myczuda, „Analiza prądów upływu logarytmicznego przetwornika analogowo-cyfrowego z sukcesywną aproksymacją,” Electrical Review, 88 (2012), no. 5а, pp. 247-250
[17] J.H. Moon, D. Y. Kim, M. K. Song, Patent No. KR20110064514A, “Logarithmic Single-Slope Analog Digital Convertor, Image Sensor Device And Thermometer Using The Same, And Method For Logarithmic Single-Slope Analog Digital Converting,”
[18] J. Gorisse, F. A. Cathelin, A. Kaiser, E. Kerherve Patent No. EP2360838A1, “Method for logarithmic analog-to-digital conversion of an analog input signal and corresponding apparatus,”
[19] R. Offen Patent No. DE102008007207A1 “Logarithmierender Analog-Digital Wandler,”
[20] H. Suzunaga Patent No. US20080054163A1, “Logarithmic-compression analog-digital conversion circuit and semiconductor photosensor device,”
Go to article

Authors and Affiliations

Zynoviy Mychuda
1
Lesya Mychuda
1
Uliana Antoniv
1
Adam Szcześniak
2

  1. Lviv Polytechnic National University, Department of the Computer-Assisted Systems of Automation, Ukraine
  2. University of Technology in Kielce, Department of Mechatronics and Machine Building, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is a presentation of the analysis of new class of logarithmic analog-to-digital converter (LADC) with accumulation of charge and impulse feedback. LADC construction, principle of operation and dynamic properties were presented. They can also be part of more complex converters and systems based on LADC. LADC of this class is perspective for implementation in the form of integrated circuit, as the number of switched capacitors needed to conversion is minimized to one capacitor. (Logarithmic ADC with accumulation of charge and impulse feedback – construction, principle of operation and dynamic properties)
Go to article

Bibliography

[1] S. Purighalla, B. Maundy, “84-dB Range Logarithmic Digital-to-Analog Converter in CMOS 0.18-μm Technology”, IEEE Transactions on Circuits and Systems II: Express Briefs, 58 (2011), no.5, pp. 279-283
[2] J. Lee, J. Kang, S. Park, J. Seo, J. Anders, J. Guilherme, M. P. Flynn, “A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s Logarithmic Pipeline ADC,” IEEE Journal Of Solid-State Circuits, 44 (2009), no.10, pp. 2755-2765
[3] B. Maundy, D. Westwick, S. Gift, “On a class of pseudo-logarithmic amplifiers suitable for use with digitally switched resistors,” Int. J. of Circuit Theory and Applications, vol. 36 (2008), no.1, pp. 81–108
[4] B. Maundy, D. Westwick, S. Gift, (2007) “A useful pseudo-logarithmic circuit,” Microelectronics International, Vol. 24 Iss: 2, pp.35 - 45
[5] M. Alirieza, L. Jing and J. Dileepan, “Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture,” Sensors, 13(8), pp. 10765- 10782, August 2013
[6] J. Guilherme, J. Vital, Jose Franca, “A True Logarithmic Analog-to- Digital Pipeline Convener with 1.5bitistage and Digital Correction,” Proc. IEEE International Conference on Electronics Circuits and Systems, pp. 393-396, Malta 2001
[7] G. Bucci, M. Faccio, C. Landi, “The performance test of a piece-linear A/D converter,” IEEE Instrumentation and Measurement Technology Conference, St. Paul USA May 1998, pp.1223.1228
[8] J. Guilherme, J. Vital, J. Franca, “A CMOS Logarithmic Pipeline A/D Converter with a Dynamic Range of 80 dB,” IEEE Electronics, Circuits and Systems, 2002. 9th International Conference on, (2002), no.3/02, pp. 193-196
[9] J. Sit and R. Sarpeshkar, “A Micropower Logarithmic A/D With Offset and Temperature Compensation,” IEEE J. Solid-State Circuits, 39 (2004), nr. 2, pp. 308-319
[10] J. Mahattanakul, “Logarithmic data converter suitable for hearing aid applications,” Electronic Letters, 41 (2005), no.7, pp. 31-32
[11] S. Sirimasakul, A. Thanachayanont, W. Jeamsaksiri, “Low-Power Current-Mode Logarithmic Pipeline Analog-to-Digital Converter for ISFET based pH Sensor,” IEEE ISCIT, 2009, no.6/09, pp. 1340-1343
[12] M. Santosa, N. Hortaa, J. Guilherme, “A survey on nonlinear analog-todigital converters,” Integration, the VLSI Journal, Volume 47, Issue 1, pp. 12–22, January 2014
[13] Z.R. Mychuda, “Logarithmic Analog-To-Digital Converters – ADC of the Future,” Prostir, Lviv, Ukraine 2002, pp. 242
[14] A. Szcześniak, Z Myczuda, “A method of charge accumulation in the logarithmic analog-to-digital converter with a successive approximation,” Electrical Review, 86 (2010), no.10, pp. 336-340
[15] A. Szcześniak, U. Antoniw, Ł. Myczuda, Z. Myczuda, „Logarytmiczne przetworniki analogowo-cyfrowe z nagromadzeniem ładunku i impulsowym sprzężeniem zwrotnym,” Electrical Review, R. 89 no. 8/2013, pp. 277 – 281
[16] A. Szcześniak, Z. Myczuda, „Analiza prądów upływu logarytmicznego przetwornika analogowo-cyfrowego z sukcesywną aproksymacją,” Electrical Review, 88 (2012), no. 5а, pp. 247-250
[17] J.H. Moon, D. Y. Kim, M. K. Song, Patent No. KR20110064514A, “Logarithmic Single-Slope Analog Digital Convertor, Image Sensor Device And Thermometer Using The Same, And Method For Logarithmic Single-Slope Analog Digital Converting,”
[18] J. Gorisse, F. A. Cathelin, A. Kaiser, E. Kerherve Patent No. EP2360838A1, “Method for logarithmic analog-to-digital conversion of an analog input signal and corresponding apparatus,”
[19] R. Offen Patent No. DE102008007207A1 “Logarithmierender Analog- Digital Wandler,”
[20] H. Suzunaga Patent No. US20080054163A1, “Logarithmic-compression analog-digital conversion circuit and semiconductor photosensor device,”
Go to article

Authors and Affiliations

Zynoviy Mychuda
1
Lesya Mychuda
1
Uliana Antoniv
1
Adam Szcześniak
2

  1. Lviv Polytechnic National University, Department of the Computer-Assisted Systems of Automation, Ukraine
  2. University of Technology in Kielce, Department of Mechatronics and Machine Building, Poland
Download PDF Download RIS Download Bibtex

Abstract

The role of energy as a key factor in enhancing sustainable development, energy security, and economic competitiveness is a reason that has made energy efficiency trends tracking essential and is why policymakers and energy planners have focused on energy intensity and its following issues. Also, the inadequate operation of the traditional energy intensity index and the overestimation of its results turned this index into a weak one. Hence, it is necessary to employ a new index that can be decomposed and is capable of considering both monetary and physical activity indicators to offer a more accurate view of the energy intensity variation. This paper develops a Composite Energy Intensity Index by combining monetary and physical activity indicators by applying the multiplicative Logarithmic Mean Divisia Index (LMDI) in 2001–2011 to decompose the factors affecting energy intensity change and seeks to fill the gap between the EGR and CEI indices. The results of the survey demonstrate more economy-wide energy consumption reduction while using the composite energy intensity index as compared to the traditional energy intensity index; also, the results show the relatively important role of the overall structure effect. From Sectoral perspective results, both energy to GDP index (EGR) and composite energy intensity index (CEI) have shown passenger transport as the most energy-consuming sector. The passenger transport sector reveals an urgent need for implementing appropriate policies to reduce the high energy consumption of the sector.
Go to article

Authors and Affiliations

Mahta Ghafarian Ghadim
1
ORCID: ORCID
Ali Faridzad
1
ORCID: ORCID

  1. Department of Energy, Agriculture and Environmental Economics, Faculty of Economics, Allameh Tabataba’i University, Iran

This page uses 'cookies'. Learn more