Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 34
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Commercialization processes are modeled and analyzed from the point of view of the implementation of activities under particular stages. These issues are the subject of many studies and analyzes, which is why the extensive literature is available on this subject. Technology valuation at various stages of the commercialization process is a separate issue. Such valuation is prepared in most cases by consulting companies for determining the price in the buying and selling processes. These valuations use known methods also used in other cases, e.g., real estate valuation. The work carried out presents the author’s concept of the commercialization process model, taking into account the costs and value of the technology at various stages of the product life cycle. The model uses a stochastic approach to determine future revenues and costs, which allows estimating the value of the technology by or in determining the probability of assessment validity. The proposed stochastic approach greatly increases the chances of using the presented solutions in practical activities related to technology valuation for the purposes of purchase and sale transactions.
Go to article

Authors and Affiliations

Bozena Kaczmarska
1
Wacław Gierulski
1
ORCID: ORCID
Josef Zajac
2
Anton Bittner
2
Wacław Gierulski
1

  1. Kielce University of Technology, Poland
  2. Technical University of Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The industrial revolution taking place since the 18th century has brought the global economies to the stage of mass production, mass industrialization and spreading ideas connected with its efficiency. The most famous of its kind is Fordism and its modern variations called PostFordism or Neo-Fordism. We can still see traditional way of producing things in some parts of the world, and the leading economies are using Ford’s ideas or the modifications of the Ford’s concepts. But there is a question about the place of these models in the modern economy, especially because mass-production causes mass-waste and modern societies has woken up to the reality of the global pollution, climate change or just the simple fact that the amount of the raw materials is limited. The social mood is slowly changing so there should be a change to the way we produce and consume things as well. There is a question: can we proceed within existing models or should we think outside the box so we can invent more suitable way of looking at efficiency and effectiveness. The objective of this paper is to contribute to the discussion about the future of how are we going to produce things. It is based on the literature review considering Fordism and its variations, Product Life Cycle facing issues like pollution, massive waste and changes in modern economy, as well as on the case study of implementing waste reduction activities in the product’ design phase in the industrial plant based in one of the EU countries – Poland.
Go to article

Authors and Affiliations

Mariusz Bednarek
1 2
Aneta Parkes
3

  1. Wyższa Szkoła Bankowa, Warszawa, Poland
  2. Universidad Autonoma de Chile, Temuco, Chile
  3. Społeczna Akademia Nauk, Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an approach to evaluating a building throughout its whole life cycle in relation to its sustainable development. It describes basic tools and techniques of evaluating and analysing the costs in the whole life cycle of the building, such as Life Cycle Assessment, Life Cycle Management, Life Cycle Cost and Social Life Cycle Assessment. The aim of the paper is to propose a model of cost evaluation throughout the building life cycle. The model is based on the fuzzy sets theory which allows the calculations to include the risks associated with the sustainable development, with the management of the investment and with social costs. Costs incurred in the subsequent phases of the building life cycle are analysed and modelled separately by means of a membership function. However, the effect of the analysis is a global cost evaluation for the whole life cycle of the building.

Go to article

Authors and Affiliations

E. Plebankiewicz
K. Zima
D. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

Accommodation tourist industry is characterized by high variability. For this category of services not only the location is crucial- that does not change, but also the standard, prices and seasonality of services. In the recent years, leisure centers performing functions only during the summer time have seen the possibility to extend their activities beyond the summer months. The reasons for this are the local investments requiring qualified staff which comes from different parts of the country, Europe and the world while creating dernand for accommodations. To meet the possible demand needs and to adapt to cold season, performing thermo-modernization works is necessary. In order to find the best solution and answer those needs, analysis of the profitability of the investrnents in a chosen holiday resort was carried out. The article presents the results of the analysis based on the payback period, LCC analysis and assessment of the investments risk.

Go to article

Authors and Affiliations

R. Milwicz
P. Nowotarski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present study is to demonstrate that environmental impacts exerted by manufactured products throughout their entire life cycle are major aspects to be considered, alongside their functional features and cost-effectiveness. One of the available methods to evaluate environmental impacts is known to as the Life Cycle Assessment (LCA) method. The study summarises the reports from the literature on the subject of environmental impact assessment. In conclusions, the authors indicate the need for assessing the environmental impact of cast products made from conventional and newly introduced alloys.

Go to article

Authors and Affiliations

A. Fedoryszyn
M. Brzeziński
Download PDF Download RIS Download Bibtex

Abstract

Sitona hunieralis Steph. has one generation per year. Adults survive through the winter. Full life cycle from egg to adult lasts 54 days on average, including about I O days for embryo, 30 days for larval and 14 days for pupa stage.
Go to article

Authors and Affiliations

Marta Pisarek
Download PDF Download RIS Download Bibtex

Abstract

Results of life cycle inventory (LCI) and life cycle assessment (LCA) for septic tanks collecting domestic sewage were presented. The study included the whole life cycle: construction, use and end-of-life stages of septic tanks. The analyses were conducted basing on actual data concerning performance of 793 septic tanks in Żory. Environmental impact assessment of the life cycle of septic tanks was conducted with TRACi and ReCiPe methods. Greenhouse gas (GHG) emission, eutrophication, fossil fuel depletion and metal depletion indicators were calculated and determinants of LCA of septic tanks were analysed. The system boundary was from cradle to grave. It was concluded that at the construction stage, GHG emission and fossil fuel depletion indicators are determined by the amount of concrete, steel, polyester resin, polyethylene, cast iron and PCV. At the use stage, GHG emission is determined by the amount and type of electricity used to treat sewage in a wastewater treatment plant (WWTP). Untreated wastewater, introduced into the environment (leaking tanks and users discharging sewage), is a determinant of infl uence on eutrophication. Life cycle inventory and environmental assessment of septic tanks with life cycle perspective are presented in the literature for the fi rst time. The results highlight the importance of including each stage in the environmental assessment of elements of the urban wastewater system.

Go to article

Authors and Affiliations

Dorota Burchart-Korol
Paweł Zawartka
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of an input-output data inventory and life cycle assessment (LCA) for individual wastewater treatment plants (IWWTPs), considering their whole life cycle, including the stage of construction, use and end-of-life. IWWTPs located in the area of a medium-sized town in Poland, were assessed from a systemic perspective. The research was conducted basing on actual data concerning performance of 304 individual wastewater treatment plants in Żory. Environmental assessment was conducted with ReCiPe and TRACI methods. Greenhouse gases (GHG) emission, eutrophication, fossil fuel and metal depletion were calculated. The LCA was conducted basing on ISO 14040 standard with SimaPro 8 software and Ecoinvent 3 database. The system boundary ranged from cradle to grave. It was shown that, at the construction stage, GHG emission depends on the amount of used cement, polyethylene, concrete, PVC and polypropylene. At the use stage, the GHG emission is determined by the sewage treatment technology and application of a bio-reactor in IWWTPs. At the construction stage, the fossil fuel depletion is determined by the amount of used polyethylene, PVC, cement, polypropylene and concrete; while the metal depletion is determined by the amount of used stainless steel, copper and cast iron. Data inventory and LCA of IWWTPs are presented for the first time. Conclusions of the work may support decisions taken by local governments concerning wastewater management in their area and promote and support solutions of high ecological standards.

Go to article

Authors and Affiliations

Dorota Burchart-Korol
Paweł Zawartka
Download PDF Download RIS Download Bibtex

Abstract

A concern about the current state of relations between industry and the environment is

often neglected. However, it is important to underline that industry and sustainability are

not mutually exclusive. There are many industrial processes to blame when analyzing the

negative impact on current socio-ecological environment. The emerging question is whether

companies nowadays are ready to face challenges in the name of sustainability, the future

of the planet and generations to come. In addition, an assessment of industrial processes

may be very time-consuming and costly in financial terms. This fact allows developing sustainability

assessment approach and its measures for keeping track on to evaluate scale of

environmental, social and economic changes. The goal of the paper is to develop a multicriteria

decision-making approach for sustainability assessment of renewable energy technology.

A sustainability assessment approach combines life cycle-based methods integrated with

multi-criteria decision-making method based on analytical hierarchy process. The resulting

assessment method allows finding a compromise between industry and the environment and

identify potential intervention points for further research. As a result of decision-making

process, string ribbon technology was considered as the most sustainable. The applicability

of the proposed method is assessed based on photovoltaic panels.

Go to article

Authors and Affiliations

Magdalena Krysiak
Aldona Kluczek
Download PDF Download RIS Download Bibtex

Abstract

The goal of this paper is to present the author’s thoughts on the possible contribution of

quality engineering to sustainable development. It is indicated that in the product life cycle

designers have the greatest potential to support this challenge. Arguments have been presented to abandon the commonly accepted paradigm, according to which the overriding goal

of the designer is to achieve the highest market value possible measured by the prospected

level of demand for the products designed. It is postulated to include the minimization of

the risks brought to the natural environment and social relations as a criterion of product

design quality. To this goal, it is necessary for designers to pursue both environmentally

friendly materials and technologies and design concepts reducing consumers’ pressure on

continuously increasing demand. Such an approach will allow for more effective control of

consumption, the main cause of the negative effects of economic growth.

Go to article

Authors and Affiliations

Adam Hamrol
Download PDF Download RIS Download Bibtex

Abstract

The use of environmentally friendly bio-pesticides is crucial for higher root and sugar yield in sugar beets. The economic importance of beet moth [ Scrobipalpa ocellatella Boyd. (Lep.: Gelechidae)] losses in the field and storage highlight the need for evaluation of appropriate, environmentally friendly methods for pest control. The aims of the present study were to i) assess azadirachin (AZN) effects on the life cycle and activity of the pest, and ii) manage the beet moth on roots under laboratory conditions. For the experiments, the main concentrations were prepared on the basis of the field-recommended dose of this pesticide (1–1.5 l/1000 l water). The LC50 was estimated for 3rd instar larvae. Later, at sublethal concentrations, the relative time for the emergence of each developmental stage was determined. The mean female fecundity was 37% (±4) for treated tests at the lowest AZN concentration (0.5 ml · l–1). AZN at 0.5 ml · l–1 concentration resulted in 62 (±4) deposited eggs per plant for the treated roots and 326 (±1) for roots in the control test. Mortality increased in response to increased AZN concentrations. The results revealed that after 72 h, the highest AZN concentration (2.5 ml · l–1) caused 100% repellency and 82% (±1.38) mortality on 3rd instar larvae. According to our findings, a concentration of 2 ml · l–1 AZN (20 gr active ingredient per 1 hectare) after 4 days affected 1st instar larvae and the larvae with no further development had 92.2% (±1.2) mortality. In conclusion, the results revealed that AZN as a biorational pesticide can significantly minimize the losses of S. ocellatella on sugar beet crops.
Go to article

Bibliography


Abdollahian-Noghabi M., Sharifi H., Babaei B., Bahmani G.A. 2014. Introduction of a new formula for determination of autumn sugar beet purchase price. Journal of Sugar Beet 29: 115–121. DOI: https://doi.org/10.1515/cerce-2015-0013.
Abedi Z., Saber M., Vojoudi S., Mahdavi V., Parsaeyan E. 2014. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science 14 (1): 30. DOI: https://doi.org/10.1093/jis/14.1.30
Adel M.M., Sehnal F., Ibrahim S.S., Yosef Salem N. 2019. Suneem oil inhibits physiological activity of Spodoptera Littoralis (Boisd.) (Lepidoptera: Noctuidae). EurAsian Journal of BioSciences 13 (2): 1311–1316.
Al-Keridis L.A. 2016. Biology, ecology and control studies on sugar-beet mining moth, Scrobipalpa ocellatella. Der Pharma Chemica 8 (20): 166–171.
Al-Rahimy S.K., Al-Sultany A.K., Murshidy Z.R., Al-Essa R.A., Kadhim Abdul A.R. 2019. Effect of crude extracts of the peels of Musa acuminate L. banana plant in some biological aspects of Culex molestus Forskal (Diptera: Culicidae) with an estimation of the enzymatic effectiveness of Tyrosinase. EurAsian Journal of BioSciences 13 (1): 1–13.
Alouani A., Rehimi N., Soltani N. 2009. Larvicidal activity of a neem tree extract (azadirachtin) against mosquito larvae in the Republic of Algeria. Jordan Journal of Biological Sciences 2 (1): 15–22.
Amin A.H., Helmi A., El-Serwy S.A. 2008. Ecological studies on sugar beet insects at Kafr El-Sheikh Governorate, Egypt. Egyptian Journal of Agricultural Research 86 (6): 2129–2139.
Amoabeng B.W., Johnson A.C., Gurr G.M. 2019. Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Applied Entomology and Zoology 54: 1–19. DOI: https://doi.org/10.1007/s13355-018-00602-0
Anonymous. 2020. Final Research Performance Report of Sugar Beet Seed Institute (SBSI) for 2018 Cropping Season. Agricultural Research, Education and Extension Organization (AREEO). Ministry of Jihad-e-Agriculture, Karaj, Iran, 121 pp. (in Persian)
Ascher K.R.S. 1993. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Archives of Insect Biochemistry and Physiology 22: 433–449. DOI: https://doi.org/10.1002/arch.940220311
Bazazo K.G.I., Mashaal R.E.F. 2014. Pests attacking post-harvest sugar beet roots, and their adverse effects on sugar content. Journal of Plant Protection and Pathology 5: 673–678. DOI: https://doi.org/10.21608/jppp.2014.87978
Bazok R., Drmic Z., Cacija M., Mrganic M., Viric Gasparic H., Lemic D.A. 2018. Moths of Economic Importance in the Maize and Sugar Beet Production. Intech Publications. Chapter 4, 21 pp. DOI: http://dx.doi.org/10.5772/intechopen.78658
Bazok R. 2010. Suzbijanje štetnika u proizvodnji šećerne repe. Glasilo Biljne Zaštite 10 (3): 153–165.
Betz A., Andrew N.R. 2020. Influence of non-lethal doses of natural insecticides spinetoram and azadirachtin on Helicoverpa punctigera (native budworm, Lepidoptera: Noctuidae) under laboratory conditions. Frontiers in Physiology 11: 1089. DOI: https://doi.org/10.3389/fphys.2020.01089
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide Biochemistry and Physiology 143: 135–140. DOI: https://doi.org/10.1016/j.pestbp.2017.08.006
Bezzar-Bendjazia R., Kilani-Morakchi S., Aribi N. 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology 133: 85–90. DOI: https://doi.org/10.1016/j.pestbp.2016.02.009
Bruce Y.A., Gounou S., Chabi-Olaye A., Smith H., Schulthess F. 2004. The effect of neem (Azadirachtaindica indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology 6: 223–232. DOI: https://doi.org/10.1111/j.1461-9555.2004.00218.x
Brunherotto R., Vendramim J.D., M.A.G. de. Oriani. 2010. Effects of tomato genotypes and aqueous extracts of Melia azedarach leaves and Azadirachta indica seeds on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 39: 784–791. DOI: https://doi.org/10.1590/S1519-566X2010000500018
Boadu K.O., Kofi Tulashie S., Akrofi Anang M., Desire Kpan J. 2011. Production of natural insecticide from neem leaves (Azadirachta indica). Asian Journal of Plant Science and Research 1 (4): 33–38.
Butterworth J.H., Morgan E.D. 1968. Isolation of a substance that suppresses feeding in locusts. Chemical Communications 1: 23–24. DOI: https://doi.org/10.1039/C19680000023
Darabian K., Yarahmadi F. 2017. Field efficacy of azadirachtin, chlorfenapyr, and Bacillus thuringiensis against Spodoptera exigua (Lepidoptera: Noctuidae) on sugar beet crop. Journal of the Entomological Research Society 19 (3): 45–52.
Dhar R., Dawar H., Garg S., Basir S.E., Talwar G.P..1996. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An. culicifacies (Diptera: Culicidae). Journal of Medical Entomology 33 (2): 195–201. DOI: https://doi.org/10.1093/jmedent/33.2.195
Dorn A., Rademacher J.M., Sehn E. 1987. Effects of azadirachtin on reproductive organs and fertility in the large milkweed bug, Oncopeltus fasciatus. Proc. 3rd Int. Neem Conf. Nairobi, 1986, Eschborn: GTZ. 13 (3): 273–288. DOI: https://doi.org/10.1016/0022-1910(86)90063-6
Dreistadt S.H. 2004. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide. UCANR Publications, CA, USA.
Er A., Taşkıran D., Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae). Archives of Biological Sciences 69 (2): 335–344. DOI: https://doi.org/10.2298/ABS160421108E
Fajt E. 1951. Repin moljac (Phthorimaea ocelatela). Biljna Proizvodnja 4 (1): 136–141.
Feder D., Valle D., Rembold H., Garcia E.S..1988. Azadirachtin induced sterilization in mature females of Rhodniuspro lixus. Zeitschriftfür Naturforschung C 43: 908–913. DOI: https://doi.org/10.1515/znc-1988-11-1218
Finney D.J. 1971. Probit Analysis. 3rd Edition, Cambridge University Press, Cambridge, UK, 333 pp.
Fong D.K.H., Kim S., Chen Z., DeSarbo W.S..2016. A Bayesian multinomial probit model for the analysis of panel choice data. Psychometrika 81 (1): 161–83. DOI: https://doi.org/10.1007/s11336-014-9437-6
Fugate K.K., Campbell L.G. 2009. Postharvest deterioration of sugar beet. p. 92–94. In: “Compendium of Beet Diseases and Pests” (R.M. Harveson, L.E. Hanson, G.L. Hein, eds.). Part III. 2nd edition. St. Paul, MN: The American Phytopathological Society Publication, USA.
Ganji Z., Moharramipour S. 2017. Cold hardiness strategy in field collected larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran 36 (4): 287–296.
Garcia J.F., Grisoto E., Vendramim J.D., Botelho P.S.M. 2006. Bioactivity of neem, Azadirachta indica, against spittlebug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane. Journal of Economic Entomology 99: 2010–2014. DOI: https://doi.org/10.1093/jee/99.6.2010
Gnanamani R., Dhanasekaran S. 2013. Growth inhibitory effects of azadirachtin against Pericallia ricini (Lepidoptera: Arctiidae). World Journal of Zoology 8 (2): 185–191.
Godinho H.P. 2007. Reproductive strategies of fishes applied to aquaculture: bases for development of production technologies. Revista Brasileira de Reprodução Animal 31 (3): 351–360.
Hasan F., Ansari M.S..2011. Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Protection 30 (4): 502–507. DOI: https://doi.org/10.1016/j.cropro.2010.11.029
Heibatian A., Yarahmadi F., Lotfi Jalal Abadi A. 2018. Field efficacy of biorational insecticides, azadirachtin and Bt, on Agrotis segetum (Lepidoptera: Noctuidae) and its carabid predators in the sugar beet fields. Journal of Crop Protection 7 (4): 365–373.
Ikeura H., Sakura A., Tamaki M. 2013. Repellent effect of neem against the cabbage armyworm on leaf vegetables. Journal of Agriculture and Sustainability 4 (1): 1–15.
Irigaray F.J., Moreno-Grijalba F., Marco V., Perez-Moreno I. 2010. Acute and reproductive effects of Align®, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana. Journal of Insect Science 10: 1–33. DOI: https://doi.org/10.1673/031.010.3301
Ismadji S., Kurniawan A., Ju Y.H., Soetaredjo F.E., Ayucitra A., Ong L.K. 2012. Solubility of Azadirachtin and several triterpenoid compounds extracted from neem seed kernel in supercritical CO2. Fluid Phase Equilibria 336: 9–15. DOI: https://doi.org/10.1016/j.fluid.2012.08.026
Jagannadh V., Nair V. 1992. Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiological Entomology 17: 56–61. DOI: https://doi.org/10.1111/j.1365-3032.1992.tb00989.x
Kheiri M. 1991. Important Pests of Sugar Beet and Their Control. Ministry of Agriculture, Agricultural Research and Education organization. Kalameh Publication Institute, Tehran. Iran, 126 pp. (in Persian)
Kheiri M., Naiim A., Fazeli M., Djavan-Moghaddam H., Eghtedar E. 1980. Some studies on Scrobipalpa ocellatella Boyd in Iran. Applied Entomology and Phytopathology 48: 1–39. (in Persian)
Liang G.M., Chen W., Liu T.X. 2003. Effects of three neem-based insecticides on diamond back moth (Lepidoptera: Plutellidae). Crop Protection 22: 333–340. DOI: https://doi.org/10.1016/S0261-2194(02)00175-8
Liu T.X., Liu S.S. 2006. Experience‐altered oviposition responses to a neem‐based product, Neemix®, by the diamondback moth, Plutella xylostella. Pest Management Science 62: 38–45. DOI: https://doi.org/10.1002/ps.1123
Lopez O., Fernández-Bolaños J.G., Gil M.V. 2005. New trends in pest control: The search for greener insecticides. Green Chemistry 7 (6): 431–442. DOI: https://doi.org/10.1039/b500733j
Lucantoni L., Giusti F., Cristofaro M., Pasqualini L., Esposito F., Lupetti P. 2006. Effects of a neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue and Cell 38: 361–371. DOI: https://doi.org/10.1016/j.tice.2006.08.005
Ma D.L., Gordh G., Zalucki M.P. 2000. Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Australian Journal of Entomology 39 (4): 301–304. DOI: https://doi.org/10.1046/j.1440-6055.2000.00180.x
Manna B., Maiti S., Dasa A. 2020. Bioindicator potential of Spathosternum prasiniferum (Orthoptera; Acridoidea) in pesticide (azadirachtin)-induced radical toxicity in gonadal/nymphal tissues; correlation with eco-sustainability. Journal of Asia-Pacific Entomology 23: 350–357. DOI: https://doi.org/10.1016/j.aspen.2020.02.007
Martinez S.S., van Emden H.F. 2001. Growth disruption, abnormalities and mortality of Spodoptera littoralis caused by azadirachtin. Neotropical Entomology 30: 113–125. DOI: http://dx.doi.org/10.1590/S1519-566X2001000100017
Mochiah M.B., Banful B., Fening K.N., Amoabeng B.W., Ekyem S., Braimah H., Owusu-Akyaw M. 2011. Botanicals for the management of insect pests in organic vegetable production. Journal of Entomology and Nematology 3 (6): 85–97.
Mordue A.J. 2004. Present concepts of the mode of action of azadirachtin from Neem. p. 229–242. In: “Neem: Today and in the New Millennium” (O. Koul, S. Wahab, eds.). Chapter 11. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/1-4020-2596-3_11
Mordue A.J., Blackwell A. 1993. Azadirachtin: an update. Journal of Insect Physiology 39: 903–924. DOI: https://doi.org/10.1016/0022-1910(93)90001-8
Mordue A.J., Morgan E.D., Nisbet A.J. 2005. Azadirachtin, a natural product in insect control. p. 185–201. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, ed.). Elsevier, Amsterdam.
Morgan E.D. 2009. Azadirachtin, a scientific gold mine. Journal of Bioorganic and Medicinal Chemistry 17 (12): 4096–4105. DOI: https://doi.org/10.1016/j.bmc.2008.11.081
Naumann K., Isman M.B. 1995. Evaluation of neem Azadirachtaindica seed extracts and oils as oviposition deterrents to noctuid moths. Entomologia Experimentalis et Applicata 76: 115–120. DOI: https://doi.org/10.1111/j.1570-7458.1995.tb01953.x
Orak S., Zandi-Sohani N., Yarahmadi F. 2019. Some alternatives to the chemical control of Spodoptera exigua (Hubner, 1808) in black-eyed pea. International Journal of Tropical Insect Science 39: 319–323. DOI: https://doi.org/10.1007/s42690-019-00043-4
Osborne J.W. 2010. Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research and Evaluation 15: 1–9. DOI: https://doi.org/10.7275/qbpc-gk17
Pineda S. Martinez A.M., Figueroa J.I., Schneider M.I., Estal P.D., Vinuela E., Gomez B., Smagghe G., Budia F. 2009. Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 102: 1490–1496. DOI: https://doi.org/10.1603/029.102.0413
Qiao J., Zou X., Lai D., Yan Y., Wang Q., Li W., Gu H. 2014. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest Management Science 70: 1041–1047. DOI: https://doi.org/10.1002/ps.3644
Qin D., Zhang P., Zhou Y., Liu B., X Jao C., Chen W., Zhang Zh. 2019. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of Insect Biochemistry and Physiology 103 (4): 1–12. DOI: https://doi.org/10.1002/arch.21646
Radhika S., Sahayaraj K., Senthil‐Nathan S., Hunter W.B. 2018. Individual and synergist activities of monocrotophos with neem based pesticide, Vijayneem against Spodoptera litura Fab. Physiological and Molecular Plant Pathology 101: 54–68. DOI: https://doi.org/10.1016/j.pmpp.2017.05.004
Raman G.V., Rao M.S., Srimannaryana G. 2000. Efficacy of botanical formulations from Annona squamosa Linn. and Azadirachta indica A. Juss against semilooper Achaea janata Linn. infesting castor in the field. Journal of Entomological Research. 24(3): 235–238.
Rashidov M.A., Khasanov A. 2003. Pests of sugar beet in Uzbekistan. Zashchita Rastenii 3: 29.
Razini A., Pakyari H., Arbab A. 2017. Estimation of sugar beet lines and cultivars infection to Scrobipalpa ocellatellaboyd. (Lepidoptera: Gelechiidae) larvae under field condition with natural infection. Journal of Sugar Beet 32 (2): 147–155.
Razini A., Pakyari H., Arbab A., Ardeh M.J., Ardestani H. 2016. Study of infestation amount to beet moth “Scrobipalpa ocellatella”, among different sugar beet genotypes in the field. Proceedings of 22nd Iranian Plant Protection Congress, 23-27 August, Karaj, Iran.
Sami A.J., Bilal S., Khalid M.,. Shakoori F.R, Rehman F., Shakoori A.R. 2016. Effect of crude neem (Azadirachta indica) powder and azadirachtin on the growth and Acetylcholinesterase activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Zoology 48 (3): 881–886.
Schluter U., Bidmon H.J., Grewe S. 1985. Azadirachtin affects growth and endocrine events in larvae of the tobacco hornworm Manduca sexta. Journal of Insect Physiology 31: 773–777. DOI: https://doi.org/10.1016/0022-1910(85)90070-8
Schmutterer H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271–297. DOI: https://doi.org/10.1146/annurev.en.35.010190.001415
Schreck C.E. 1977. Techniques for evaluation of insect repellents: a critical review. Annual Review of Entomology 22: 101–119. DOI: https://doi.org/10.1146/annurev.en.22.010177.000533
Seljasen R., Meadow R. 2006. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: dose response, residual activity, repellent effect and systemic activity in cabbage plants. Crop Protection 25: 338–345. DOI: https://doi.org/10.1016/j.cropro.2005.05.007
Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiology 4: 359. DOI: https://doi.org/10.3389/fphys.2013.00359
Shannag H., Capinera J., Freihat N.M. 2015. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). Journal of Insect Science 15 (1): 152. DOI: https://doi.org/10.1093/jisesa/iev134
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 (7): 1–36. DOI: https://doi.org/10.3390/biom9070285
Shimizu T. 1988. Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage armyworm, Mamestra brassicae, in vitro. Entomologia Experimentalis et Applicata 46: 197–199.
Sieber K.P., Rembold H. 1983. The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. Journal of Insect Physiology 29: 523–527. DOI: https://doi.org/10.1016/0022-1910(83)90083-5
Smith S.L., Mitchell M.J..1988. Effects of azadirachtin on insect cytochrome P-450 dependant ecdysone 20-mono oxygenase activity. Biochemical and Biophysical Research Communications 154: 559–563. DOI: https://doi.org/10.1016/0006-291x(88)90176-3
Shu B., Zhang J., Cui G., Sun R., Yi X., Zhong G. 2018. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers in Physiology 9: 1–12. DOI: https://doi.org/10.3389/fphys.2018.00137
Tanzubil P.B. 1995. Effects of neem Azadirachta indica (A. Juss) extracts on food intake and utilization in the African armyworm, Spodoptera exempta (Walker). Insect Science and its Application 16: 167–170. DOI: https://doi.org/10.1017/S1742758400017069
Tanzubil P.B., McCaffery A.R..1990. Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm, Spodoptera exempta. Crop Protection 9: 383–386. DOI: https://doi.org/10.1016/0261-2194(90)90012-V
Tome H.V.V., Martins J.C., Corrêa A.S., Galdino T.V.S., Picanço M.C., Guedes R.N.C. 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta. Crop Protection 46: 63–69. DOI: https://doi.org/10.1016/j.cropro.2012.12.021
Ünsal S., Güner E. 2016. The effects of biopesticide Azadirachtin on the Fifth Instar Galleria mellonella L. (Lepidoptera: Pyralidae) Larval Integument. International Journal of Crop Science and Technology. 2(2): 60-68.
Vilca Malqui K.S., Vieira J.L., Guedes R.N.C., Gontijo L.M. 2014. Azadirachtin-induced hormesis mediating shift in fecundity longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). Journal of Economic Entomology 107: 860–866. DOI: https://doi.org/10.1603/ec13526
Wallace E.L. 2017. Investigating Life History Stages and Methods to Interrupt the Life Cycle, and Suppress Offspring Production, in the Queensland Fruit Fly (Bactroceratryoni). Thesis (PhD Doctorate). Griffith School of Environment. Gold Coast, Queensland, Australia, 118 pp. DOI: https://doi.org/10.25904/1912/1946
Wilps H. 1989. The influence of neem seed kernel extracts (NSKE) from the neem tree Azadirachta indicaon flight activity, food ingestion, reproductive rate and carbohydrate metabolism in the Diptera Phormia terraenovae (Diptera, Muscidae). Zoologische Jahrbucher Physiology 93: 271–282.
Zada H., Naheed H., Ahmad B., Saljoqi A.Ur R., Salim M., Hassan E. 2018. Toxicity potential of different azadirachtin against Plutella Xylostella (Lepidoptera; Plutellidae) and its natural enemy, Diadegma species. Journal of Agronomy and Agricultural Science 1: 003. DOI: https://doi.org/10.24966/AAS-8292/100003
Zhong B., Chaojun L., Weiquan Q. 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomological Society 100 (2): 215–218. DOI: https://doi.org/10.1653/024.100.0215
Go to article

Authors and Affiliations

Somaye Allahvaisi
1
Mahdi Hassani
2
Bahram Heidari
3

  1. Plant Protection Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  2. Sugar Beet Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  3. Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Planning maintenance costs is not an easy task. The amount of costs depends on many factors, such as value, age, condition of the property, availability of necessary resources and adopted maintenance strategy. The paper presents a selection of models which allow to estimate the costs of building maintenance, which are then applied to an exemplary office building. The two of the models allow a quick estimation of the budget for the maintenance of the building, following only indicative values. Two other methods take into account the change in the value of money over time and allow to estimate, assuming the adopted strategy and assumed costs, the value of the current amount allocated to the maintenance of the building. The final model is based on the assumptions provided for in Polish legislation. Due to significant simplifications in the models, the obtained results are characterized by a considerable discrepancy. However, they may form the basis for the initial budget planning related to the maintenance of the building. The choice of the method is left to the decision makers, but it is important what input data the decision maker has and the purpose for which he performs the cost calculation.
Go to article

Authors and Affiliations

Edyta Plebankiewicz
1
ORCID: ORCID
Agnieszka Leśniak
1
ORCID: ORCID
Eva Vitkova
2
ORCID: ORCID
Vit Hromadka
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
  2. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republik
Download PDF Download RIS Download Bibtex

Abstract

Life cycles,number of eggs per female,minimal adult female length and reproductive costs are presented for 18 species of Amphipoda from the West Spitsbergen area, 77 –79 °N. Fifteen species incubated eggs during the polar night and released their offspring in early April. Three species incubated eggs from late spring till late summer. The appearance of the youngest juveniles, indicating the hatching period, is presented for 63 species. Most of the species studied were K strategists, with large eggs of over 1 mm diameter; only one species (Hyperoche medusarum ) was r – strategist.

Go to article

Authors and Affiliations

Jan Marcin Węsławski
ORCID: ORCID
Joanna Legeżyńska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the studies was to collect information on the impact of the identified risk factors on the amount of costs incurred in the life cycle of buildings. The own studies were focused especially on residential and non-residential buildings. The studies consisted in obtaining expert opinions on the subject of the research involves in the non-random (arbitrary) selection of a sample of respondents from among specialists corresponding to the industry purpose of the studies and the research material. The research used the expert questionnaire method. The studies were divided into three stages. In the first stage, the identification and division of risk factors in the life cycle of buildings was performed. Then, experts assessed 45 selected risk factors that may affect the amount of costs incurred in the life cycle of buildings. In the last step, the research results were developed in the form of a checklist knowledge base, containing information about the potential impact of the identified risk factors in the life cycle of buildings on the amount of the corresponding components of life cycle costs.
Go to article

Authors and Affiliations

Damian Wieczorek
1
ORCID: ORCID
Krzysztof Zima
1
ORCID: ORCID
Edyta Plebankiewicz
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The model for estimating the whole life costs of the building life cycle that allows the quantification of the risk addition lets the investor to compare buildings at the initial stage of planning a construction project in terms of the following economic criteria: life cycle costs (LCC), whole life costs (WLC), life cycle equivalent annual costs (LCEAC) and cost addition for risk (ΔRLCC). The subsequent stages of the model development have been described in numerous publications of the authors, while the aim of this paper is to check the accuracy of the model in the case of changing the parameters that may affect the results of calculations. The scope of the study includes: comparison of the results generated by the model with the solutions obtained in the life cycle net present value method (LCNPV) for time and financial input data, not burdened with the risk effect; the analysis of the variability of results due to changes in input data; analysis of the variability of results as a consequence of changing the sets of membership functions for input data and methods for defuzzification the result.

Go to article

Authors and Affiliations

E. Plebankiewicz
K. Zima
D. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the analysis of carbon footprint values for children’s footwear was conducted. This group of products is characterized by similar small mass and diversity in the used materials. The carbon footprint is an environmental indicator, which is used to measure the total sets of greenhouse gas (GHG) emissions into the atmosphere caused by a product throughout its entire lifecycle. The complexity of carbon footprint calculation methodology is caused by multistage production process. The probability of emission greenhouse gases exists at each of these stages. Moreover, a large variety of footwear materials – both synthetic and natural, give the possibility of the emission of a lot of waste, sewage and gases, which can be dangerous to the environment. The diversity of materials could be the source of problems with the description of their origins, which make carbon footprint calculations difficult, especially in cases of complex supply chains. In this paper, with use of life cycle assessment, the carbon footprint was calculated for 4 children’s footwear types (one with an open upper and three with full uppers). The life cycles of the product were divided into 8 stages: raw materials extraction (stage 1), production of input materials (stage 2), footwear components manufacture (stage 3), footwear manufacture (stage 4), primary packaging manufacture (stage 5), footwear distribution to customers (stage 6), use phase (stage 7) and product’s end of life (stage 8). On these grounds, it was possible to point out the life cycle stages, where the optimization activities can be implemented in order to reduce greenhouse gases emissions. The obtained results showed that the most intensive corrective actions should be focused on the following stages: 3 (the higher emissivity), 4 and 8.

Go to article

Authors and Affiliations

Wioleta Serweta
Robert Gajewski
Piotr Olszewski
Alberto Zapatero
Katarzyna Ławińska
Download PDF Download RIS Download Bibtex

Abstract

The problem of the proper functioning of Park-and-Ride facilities seems to be of key importance for ensuring appropriate transport in cities in which the intensity of road traffic is systematically increasing, together with the increase of environmental pollution (air pollution, noise etc.). The attractiveness of a car park of this kind seems obvious – instead of a burdensome journey in one’s own car, one changes the vehicle to fast municipal public transport or another means of transport (a bike, a scooter), or reaches the destination on foot. This results in benefits – above all in terms of comfort (shortening the time of the journey), health advantages etc. As has been proven by experiments, facilities of this kind are an expensive investment, the location of which (e.g. stand-alone) does not always ensure full utilization. The concept presented in the article assumes the possibility of a gradual extension of the multistorey car park following the increase of the demand. The article attempted to demonstrate that one of the sources of increasing attractiveness is the appropriate location (guaranteeing easy commute to the car park), the possibilities to continue the journey in an attractive way, then increasing the attractiveness through the possibility to use various services (shopping, the gym, the swimming pool, cinema, restaurants) and thirdly: the plan of launching the car park and its utilization in the life cycle should ensure the possibility of flexible reacting to changes of the demand (the experiences of the ongoing pandemic indicate that there is no guarantee of ensuring systematic demand increase). An element which also seems significant is the limitation of costs in the initial stage of investments of this kind with the possibility of gradual extension following the change of user habits.
Go to article

Authors and Affiliations

Jerzy Paslawski
1
ORCID: ORCID
Tomasz Rudnicki
2
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, 5 Piotrowo St., 60-965 Poznan, Poland
  2. Faculty of Civil Engineering and Geodesy, Military University of Technology in Warsaw,2 Gen. S. Kaliskiego St., 01-476 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study we investigate why bequests are left using a life course approach. Planned post mortem wealth transfers to children are linked with inter vivos transfers and inheritances left by the parents of the plan-makers. Individual decisions concerning wealth accumulation and bequeathing can be understood better if adjacent generations are taken into account. Moreover, particular events from an individual life history (widowhood, divorce, disease, and others) affect bequest decisions. A life course perspective proved fruitful in better understanding bequest behavior.

Go to article

Authors and Affiliations

Anna Nicińska
Download PDF Download RIS Download Bibtex

Abstract

The occurence of the crustacean Branchinecta gaini was observed in the fresh-water ponds on King George Island. Morphological structure of the following developmental stages was described: nauplius, metanauplius, adult males, adult females, and gravid females with egg-sacs filled with eggs. The active phase of the life cycle of this species lasts 6 months (November-May). During that time one generation of Branchinecta develops. The reproductive season lasts from January until the freezing of the ponds.

Go to article

Authors and Affiliations

Wojciech Jurasz
Wojciech Kittel
Piotr Presler
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the life cycle profiles of income and consumption and relative income mobility in Poland – a transition economy facing rapid structural economic and social changes. According to my results, and in line with the empirical evidence for advanced economies, the age-profiles of average income and consumption in Poland exhibit a hump. The inequality of income over the life cycle is found to flatten relatively quickly in Poland, which contrasts with the approximately linear shape observed in the US. When individual income process is fitted to match the Polish inequality profile, it exhibits less persistence than in the US. Past earnings turn out to affect current income more strongly for the group of more educated individuals. Moreover, and in contrast to the permanent income hypothesis as well as findings for other economies, no evidence of an increase in consumption inequality for households older than 30 years is found. Finally, the obtained estimates of relative income mobility in Poland are higher than those for developed countries.

Go to article

Authors and Affiliations

Aleksandra Kolasa
Download PDF Download RIS Download Bibtex

Abstract

The development of a novel design for the toothed segment of drive transmission in longwall shearer is expected to significantly reduce

the cost of individual components of the feed system and the related work of repair and renovations, increasing at the same time the safety

of mine repair teams.

The conducted experimental and numerical analysis of the state of stress and strain in the innovative design of the toothed segment has

enabled estimating the maximum effort of the developed structure. Based on the results of fundamental mechanical studies of the cast

L20HGSNM steel and fatigue tests combined with the numerical stress/strain analysis, the fatigue life curve was plotted for the examined

casting of the rack.

Go to article

Authors and Affiliations

M. Maj
S. Pysz
R. Żuczek
J. Piekło
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the analysis of selected risks as part of investments in the power

engineering at the initial (tender) stage of the life cycle in the context of the method of

project management by the Contractor. The study was carried out on the basis of an

analysis of over 500 tenders in the power engineering, from the last 5 years, taking into

account future forecast data. The analysis carried out in this article was aimed at achieving

specific and unique goals and results aimed at creating a useful product, which is the

Contractor’s offer in the power engineering, taking into account the most significant risks.

The result of this article is to support the project team in implementing risk management

in the project at the tender stage. For this purpose, the risks with their basic parameters

were defined, which allowed for the development of a risk matrix taking into account the

data obtained in the tender procedures of leading electric power distributors. Based on

the proposed risk quantification criteria, a list of remedial actions was prepared for all risk

types listed in this article. In addition, the aspects of possible elimination/reduction of the

impact of the most significant risks that occur at the analyzed stage of the investment life

cycle were developed.

Go to article

Authors and Affiliations

Michal Borecki
Download PDF Download RIS Download Bibtex

Abstract

The transition to circular economy requires diversifying material sources, improving secondary raw materials management, including recycling, and finally finding sustainable alternative materials. Both recycled and bio-based plastics are often regarded as promising

alternatives to conventional fossil-based plastics. Their broad application instead of fossilbased plastics is, however, frequently the subject of criticism because of offering limited

environmental benefits. The study presents a comparative life cycle assessment (LCA) of

fossil-based polyethylene terephthalate (PET) versus its recycled and bio-based counterparts. The system boundary covers the plastics manufacturing and end-of-life plastic management stages (cradle-to-cradle/grave variant). Based on the data and assumptions set

out in the research, recycled PET (rPET) demonstrates the best environmental profile out

of the evaluated plastics in all impact categories. The study contributes to circular economy in plastics by providing transparent and consistent knowledge on their environmental

portfolio.

Go to article

Authors and Affiliations

Magdalena Rybaczewska-Błażejowska
Angel Mena-Nieto
Download PDF Download RIS Download Bibtex

Abstract

In this study, the environmental impacts of the organic fraction of municipal solid waste (OFMSW) treatment and its conversion in anaerobic digestion to glycerol tertiary butyl ether (GTBE) were assessed. The production process is a part of the innovative project of a municipal waste treatment plant. The BioRen project is funded by the EU’s research and innovation program H2020. A consortium has been set up to implement the project and to undertake specific activities to achieve the expected results. The project develops the production of GTBE which is a promising fuel additive for both diesel and gasoline. It improves engine performance and reduces harmful exhaust emissions. At the same time, the project focuses on using non-recyclable residual organic waste to produce this ether additive.

The aim of this paper is the evaluation through Life Cycle Assessment of the environmental impact GTBE production in comparison with a production of other fuels. To quantify the environmental impacts of GTBE production, the ILCD 2011 Midpoint+ v.1.10 method was considered. The study models the production of GTBE, including the sorting and separation of municipal solid waste (MSW), pre-treatment of organic content, anaerobic fermentation, distillation, catalytic dehydration of isobutanol to isobutene, etherification of GTBE with isobutene and hydrothermal carbonization (HTC).

The results indicate that unit processes: sorting and hydrothermal carbonization mostly affect the environment. Moreover, GTBE production resulted in higher environmental impact than the production of conventional fuels.

Go to article

Authors and Affiliations

Magdalena Muradin

This page uses 'cookies'. Learn more