Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 37
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The protection of Polish architectural heritage in the former eastern borderlands, accomplished through the conservation and technical securing of historical structures, constitutes one of the main programmes that are implemented by the Ministry of Culture and National Heritage. Currently, many Polish historical buildings in the former eastern borderlands are in a very bad technical condition. The load-bearing systems of these elements, as well as elements of their finish, require immediate emergency securing work. The basic steps that precede conservation work are emergency structural works, which guarantee the durability and stability of the entire historical substance. The specifics and complexity of the problem of the failure of historical buildings often demands an in-depth analysis of a series of factors that are difficult to measure and which are responsible for the cause and effect relationship during the early stage of the technical evaluation of a structure. The analyses of failures of numerous historical structures, for instance that were carried out by the authors, have become the inspiration for the search for effective methods of analysis that would allow for an in-depth analysis of the causes and effects of the failures in question. The DEMATEL method (Decision Making Trial and Evaluation Laboratory) that has been presented in this work, and its fuzzy extension, has lately become one of the more popular methods used in the cause-and-effect analysis of various phenomena. The authors demonstrated how this method works on the example of the evaluation and securing of the load-bearing system of the XVII Collegiate church of the Holy Trinity in the town of Olykha in the Volhynskiy Oblast, Ukraine.

Go to article

Authors and Affiliations

G. Śladowski
R. Paruch
Download PDF Download RIS Download Bibtex

Abstract

The authors describe the program undertaken at the Warsaw University of Technology (WUT), aimed at developing mobile aerodynamic laboratories to be used for investigation into aerodynamic properties of airfoils or lightweight propulsion systems - in natural scale and in natural atmosphere. The enterprise was named the EB-program, and has both: research and educational aspects; in all phases of the program (i.e. design, manufacturing and testing) the WUT students are involved. As the result of work, three mobile aerodynamic laboratories were build: EB-1 - which was tested on the car roof, EB-2 - unique flying laboratory based on the PW-6 glider, and EB-3 - a new generation of flying wind tunnel to be used on the AOS-71 glider, which currently is under preparation to the flight tests. The authors present in detail the measurement systems and procedures supported by the Lab View software.

Go to article

Authors and Affiliations

Mirosław Rodzewicz
Dominik Głowacki
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns an approach to model the ledger-stand joints of modular scaffolds. Based on the analysis of the working range of the ledger (represented by a linear relationship between load and displacement), two models of the ledger-stand joint are analysed: first – with flexibility joints and second – with rigid joints and with a transition part of lower stiffness. Parameters are selected based on displacement measurements and numerical analyses of joints, then they are verified. On the basis of performed research, it can be stated that both methods of joint modelling recommended in this paper, can be applied in engineering practices.

Go to article

Authors and Affiliations

E. Błazik-Borowa
M. Pieńko
A. Robak
A. Borowa
P. Jamińska-Gadomska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented investigations was to irnprovc the quality of CFO numerical modeling of the propagation of gaseous contaminations in a test laboratory with a tracer gas source and a local exhaust in general mixing ventilation. The investigations were carried out making use of experimental identification of the flow. Concise information is presented concerning the CFO method applied in the modeling of the airflow and gaseous contaminant. The tested object has been characterized, as well as its respective experimental data. The ways of generating its simulation model has been described, paying special attention to the simulation of the diffuser. TI1e results of prediction have been compared with the results of measurements of the air velocity and the concentration of gaseous contaminant. Attempts have been made to improve the quality of the obtained results of prediction of the distribution of tracer gas concentration by increasing the accuracy simulating the diffuser, the jct leaving the diffuser and the airflow pattern in surrounding the contarninant source and suction nozzle. It has also been tried to utilize the results of numerical prediction for the purpose of determining the effectiveness of the local exhaust.
Go to article

Authors and Affiliations

Barbara Lipska
Download PDF Download RIS Download Bibtex

Abstract

Glass-aluminum building facades, as well as glazed walls intended to construct internal partitions of various types with glass doors, the purpose of which is to create fire zones, must satisfy certain fire resistance requirements stated in the codes. The offer of domestic and foreign manufacturers consists of system fire resistant partitions manufactured in the EI 30 to EI 180 fire resistance classes. Fire retardant properties of such partitions are verified experimentally, and the technical approvals are issued based on the results of such tests. In this paper the results of fire tests performed on selected partitions made by the leading domestic maker of glass-aluminum systems and representative for the whole commercial offer of Aluprof S.A. are presented. Fire resistance of doors and partitions made of aluminum sections with fire protecting insulation in one or several chambers and Polflam glazing panes differing in thickness of swelling gel have been tested. In this paper a comparative analysis of the temperature increase curves obtained on the external surface of glass panes and aluminum sections forming the tested partitions has been performed. The relationships between the internal structure of aluminum sections and glazing panes and the shape of empirical curves have been indicated. A mixed tangent-secant linearization of these curves has been proposed as well as presentation of the experimental results in the non-dimensional coordinates. Such presentation form of final experimental results allows for a clear interpretation of laboratory tests with reliable documenting of nominal fire resistance requirements.
Go to article

Authors and Affiliations

Marian Gwóźdź
1
ORCID: ORCID
Michał Marcinowski
2
ORCID: ORCID
Patrycja Antonik-Popiołek
1
ORCID: ORCID

  1. University of Bielsko-Biala (ATH), Department of Civil Engineering, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  2. Aluprof S.A.„ ul. Warszawska 153, 43-300 Bielsko-Biała, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents numerical and experimental research on glulam delamination in a double lap connection with predominant shear stresses. Laboratory tests and wide literature survey enabled to determine timber and glue joint parameters. Cohesive zone theory, generally used for epoxy matrix and fiber reinforced composites, was adopted to modelling glue layer delamination in glulam elements. Numerical models were validated with laboratory tests.

Go to article

Authors and Affiliations

B. Kawecki
J. Podgórski
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a new model of friction coupling in rolling friction is presented. Apart from slips related to elastic and plastic deformation in the area of actual contact of two bodies, the mechanism includes also inertia forces related to tangential deformations. Research concerning a model of coupling mechanism of variable ratio friction wheels is described. The main objective or the investigation was to prove that the force acting along the contact line of friction wheels is significantly affected by the shape of the contact area which had not been taken into account in the relations applied so far. A new model of the coupling mechanism was suggested and verified experimentally.
Go to article

Authors and Affiliations

Czesław Koziarski
Download PDF Download RIS Download Bibtex

Abstract

Reliable estimation of geotechnical parameters is often based on reconstruction of a complete loading process of subsoil on a specimen in laboratory tests. Unfortunately laboratory equipment available in many laboratories is sometimes limited to just a triaxial apparatus
– the use of which generates diffi culties whenever a non-axisymmetric problem is analysed.

The author suggests two simple operations that may be done to improve the quality of simulation in triaxial tests. The fi rst one is based on the use of triaxial extension along the segments of the stress path p’-q-θ for which the Lode’s angle values are positive. The second one consists in a mod-ifi cation of the equivalent stress value in such a way that the current stress level in the specimen complies with results of FEM analysis.

Go to article

Authors and Affiliations

M. Kowalska
Download PDF Download RIS Download Bibtex

Abstract

The use of shredded tyre in civil engineering applications is a significant potential end use market. The reuse of tyre chips may not only address growing environmental and economic concerns, but also help to solve geotechnical problems associated with low shear strength. The purpose of this paper is to investigate the properties of tyre chips and tyre chips – sand mixture, and to find the mixture with the highest shear strength. In this study, an experimental testing program was undertaken using a large – scale triaxial apparatus with the goal of evaluating the optimum percentage of tyre chips in sand. The effects on shear strength of varying percentage of tyre chips and varying confining pressure were studied. Tyre chips content was suspected to have influence on stress – strain and volumetric strain behaviour of the mixture. Some tests were conducted to check the influence of number of used membranes, of saturation and compaction, on sample properties.

Go to article

Authors and Affiliations

E. Dembicki
M. Kowalczyk
P. Gotteland
Download PDF Download RIS Download Bibtex

Abstract

W strap is a crucial surface support component for underground coal mine roadways. In this study, the failure characteristics of the W strap in the field are discussed, and the loading characteristics of the strap and the faceplate are numerically and experimentally analysed. Afterwards, a loading apparatus capable of reappearing the loading environment of the strap in the field is fabricated. This loading device, combined support systems consisting of a bolt, faceplate and strap is tested under different simulated strata conditions. Failure patterns of the strap are evaluated by the 3D scanning method, and proper selection of a faceplate is explored. Results indicate that a domed faceplate can achieve a favourable supporting effect on strata, and thus it is favoured compared with a square domed faceplate. In addition, rock cavity and rock integrity beneath the strap are essential factors determining the servicing life of the overall supporting system.
Go to article

Authors and Affiliations

Xiaowei Feng
1
ORCID: ORCID
Fei Xue
2
ORCID: ORCID
Xiaotian Feng
3
ORCID: ORCID
Tongyang Zhao
2
ORCID: ORCID

  1. China University of Mining and Technology, China
  2. Shaoxing University, Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, China
  3. Xi’an University of Architecture and Technology, Politecnico di Milano, China
Download PDF Download RIS Download Bibtex

Abstract

Aviation testing is intrinsically connected with rotary telemetry, which enables engineers to measure and verify parameters of high-speed aircraft engines components during laboratory testing. The main purpose of this article is to propose new design concept of smart telemetry module for temperature measurements, which could be easily adapted to various demands of high-speed rotary components tests and is more handful, functional and affordable than other solutions on the market. The result of the work is a telemetry system in form of light weight, PCB-based, wireless powered, smart transducer. Article presents state of art analysis, design and manufacturing steps, test results and conclusions.
Go to article

Authors and Affiliations

Tomasz Kabala
1
Jerzy Weremczuk
2

  1. Łukasiewicz Research Network – Institute of Aviation, Poland
  2. Faculty of Electronics and InformationTechnology, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Effective and safe anesthesia for rodents has long been a leading concern among biomedical researchers. Intraperitoneal injection constitutes an alternative to inhalant anesthesia.

Purpose: The aim of this study was to identify a safe, reliable, and effective anesthesia and postoperative analgesia protocol for laboratory rats exposed to painful procedures.

Material and methods: Twenty-seven female Wistar rats in an ongoing study that required surgery were randomized into groups for three different intraperitoneal anesthesia protocols and three different analgesia regimens. The anesthesia groups were (1) medetomidine + ketamine (MK), (2) ketamine + xylacine (KX), and (3) fentanyl + medetomidine (FM). Three analgesia groups were equally distributed among the anesthesia groups: (1) local mepivacaine + oral ibuprofen (MI), (2) oral tramadol + oral ibuprofen (TI), and (3) local tramadol + oral tramadol + oral ibuprofen (TTI). A core was assigned to measure anesthesia (0-3) and analgesia (0-2) effectiveness; the lower the score, the more effective the treatment.

Results: The mean MK score was 0.44 versus 2.00 for FM and 2.33 for KX. Mean score for analgesia on the first postoperative day was TTI (4.66) TI (9.13), and MI (10.14). Mean score 48 hours after surgery was TTI (3.4), TI (6.71), and MI (9.5). These differences were statistically significant.

Conclusion: MK was shown to be a reliable, safe, and effective method of anesthesia. The TTI analgesia regimen is strongly recommended in light of these results.

Go to article

Authors and Affiliations

F. Moreno-Mateo
B. García-Medrano
A. Álvarez-Barcia
M.J. Gayoso
M.A. Martín-Ferrero
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of preliminary tests for estimating the modulus of elasticity of wooden beams from firs reinforced with PBO fiber mesh. The tests were carried out in the Materials Strength Laboratory at the Kielce University of Technology in Kielce, Poland with PN-EN 408:2004. The wooden elements were subjected to a four-point bending test with the aim of estimating the elastic modulus when bending, assuming the loading velocities of the loading forces of 5 mm/min. The obtained results show a significant increase in the load-bearing capacity of beams reinforced with PBO mesh.

Go to article

Authors and Affiliations

P. Sokołowski
ORCID: ORCID
P.G. Kossakowski
Download PDF Download RIS Download Bibtex

Abstract

Fresh water is essential for life. More and more countries around the world are facing scarcity of drinking water, which affects over 50% of the global population. Due to human activity such as industrial development and the increasing greenhouse effect, the amount of drinking water is drastically decreasing. To address this issue, various methods of sea and brackish water desalination are used. In this study, an energy analysis (specific energy consumption, SEC) of two laboratory membrane processes, reverse osmosis (RO) and pervaporation (PV), was conducted. A model feed system saline water at 0.8, and 3.5% wt. NaCl was used. The efficiency and selectivity of membranes used in PV and RO were examined, and power of the devices was measured. The desalination processes were found to have a high retention factor (over 99%) for both PV and RO. For PV, the permeate fluxes were small but they increased with increasing feed flow rate, process temperature and salt content in the feed. The calculated SEC values for both laboratory processes ranged from 2 to 70 MWh/m 3. Lowering the process temperature, which consumes 30 to 60% of the total energy used in the PV process, can be an important factor in reducing energy consumption.
Go to article

Authors and Affiliations

Izabela Gortat
1
ORCID: ORCID
Joanna Marszałek
1
ORCID: ORCID
Paweł Wawrzyniak
1

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Five years ago, the Act on the protection of animals used for scientific or educational purposes entered into force. It is the implementation of Directive 2010/63/ EU into the Polish legal system. During the work on the Directive, most scientists were convinced that the previous Act on animal experiments of 2005 was in line with the new EU law and only minor modifications would be necessary. Legislators, however, decided to create a completely new legal act. Already at the time of the Act's creation, the scientific community made many critical comments regarding the law. Significant discrepancies between the Directive and the proposed provisions of the Act were far more stringent, and in many places with imprecise provisions which could have resulted in difficulties in conducting research using animals. Unfortunately, most of the postulates of the scientific community were not considered at that time. What does the Act look like 5 years after its adoption? Instead of a transparent and balanced law modeled on the EU Directive, which provides real protection for experimental animals, while safeguarding the intellectual rights of animal testing units, a patch of underdeveloped, sometimes mutually exclusive provisions has been issued. Instead of raising the welfare of the animals used for research to a higher level, it significantly increased the costs of operating research units and increased bureaucracy. Instead of rationalizing the system of issuing consents for research, it has been weakened and entangled in administrative and legal disputes without the provision of basic administrative facilities. Instead of increasing the international mobility of scientists and technicians working with experimental animals, the implementation of the law created a training “system” that is not recognized in any other EU country. In the light of the 5-year experience of the scientific community and the expert part of the composition of local ethics committees, we postulate to introduce a number of significant changes to the act so that its amended version actually ensures animal protection, respect for researchers and returns to the current of European legislation.

Go to article

Authors and Affiliations

Małgorzata Gajewska
Joanna Gromadzka-Ostrowska
Jan Konopacki
Krzysztof Turlejski
Cezary W. Watała
Krzysztof Wąsowicz
Anna Wesołowska
Marek Wieczorek
Piotr Wlaź
Romuald Zabielski
Download PDF Download RIS Download Bibtex

Abstract

This is response of the authors of the article published in the “Nauka” (3/2020) to the polemic note published in the issue 1/2021. In the response, authors signaled the progressive difficulties in conducting research on animals, attributed to the practices of applying the “Act on the protection of animals used for scientific or educational purposes” of January 15, 2015. The use of animals for research in accordance with the provisions of the Act of 2015 was paid for by a number of ambiguities in the interpretation of the provisions of the Act, increased official reporting without any real effect on animal welfare, and increased pressure from some non-governmental organizations, whose aim is to completely block the conduct of animal research.
Go to article

Authors and Affiliations

Marta Gajewska
1 2
Joanna Gromadzka-Ostrowska
3
Jan Konopacki
4
Krzysztof Turlejski
5
Cezary W. Watała
6
Krzysztof Wąsowicz
7
Anna Wesołowska
8
Marek Wieczorek
9
Piotr Wlaź
10
Romuald Zabielski
2

  1. Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy
  2. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
  3. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (II LKE w Warszawie)
  4. Uniwersytet Łódzki
  5. Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie
  6. Uniwersytet Medyczny w Łodzi
  7. Uniwersytet Warmińsko-Mazurski w Olsztynie (LKE w Olsztynie)
  8. Uniwersytet Jagielloński, Collegium Medicum w Krakowie
  9. Uniwersytet Łódzki (LKE w Łodzi)
  10. Uniwersytet Marii Curie-Skłodowskiej w Lublinie (LKE w Lublinie)
Download PDF Download RIS Download Bibtex

Abstract

The drive train of a small scale magnetically levitated train reveals the principles of a mechatronic system and offers challenges related to design, construction and control. Therefore, it is used at the Institute of electrical Machines (IEM) of the RWTH Aachen University as a demonstrator for engineering solutions. Instead of being a part of a static predefined student laboratory, the small scale magnetically levitated train is part of dynamic individual student projects. This approach provides the advantage that the students are directly involved in the engineering process and gain motivation out of their personal ideas becoming reality.
Go to article

Authors and Affiliations

Gregor Glehn
Rüdiger Appunn
Kay Hameyer
Download PDF Download RIS Download Bibtex

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Marciniak
Download PDF Download RIS Download Bibtex

Abstract

A special Slag-Prop Cu database has been developed to archive data from laboratory and industrial tests related to post-reduction slags. In

order to enrich the data areas, it was decided to design a system for measuring the temperature of the liquid slag and its viscosity. Objectives

of research work are to gather information on the properties of post-slags such as the temperature of liquid slag and its viscosity. The

discussed issues are especially important in the foundry practice. Designed research stand and using of database applications can greatly

facilitate the work of metallurgists, foundrymen, technologists and scientists. The viscosity measurement was developed and presented

earlier. The author's analytical methodology was supplemented by a thyristor measuring system (described in the article). The system

temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. Measurement of the voltage mV -

using the Seebeck effect can be measured throughout the entire range of thermocouple resistance, up to 1300 °C. Direct temperature

measurement ⁰C - measurement only below 1000 ⁰C. Additional measurement - the measurement can also be read from the pyrometer set

above the bath. The temperature and the reading frequency depend on the device itself. The principle of measurement is that in a molten

metal / slag crucible, we put a N-type thermocouple. The thermocouples are hung by means of a tripod above the crucible and placed in a

crucible. The thermocouple is connected to a compensating line dedicated to this type of thermocouple. The cable is in turn connected to a

special multimeter that has the ability to connect to a computer and upload results. Temperature measurement can be performed

simultaneously in 3 ways to reduce the measurement error. The Sn-Pb alloy has been subjected to testing for proper operation of the device.

In this foot should be observed the supercooling of the liquid, which initiates the crystallization process and in which latent heat begins to

exude raising the temperature until the coagulation temperature is reached.

Go to article

Authors and Affiliations

W. Wołczyński
A.W. Bydałek
M. Holtzer
S. Biernat
Download PDF Download RIS Download Bibtex

Abstract

In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.

Go to article

Authors and Affiliations

Adam Mazikowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a design of a tracked in-pipe inspection mobile robot with an adaptive drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically. The paper covers a design process of a virtual prototype, focusing on track adaptation to work environment. A mathematical description of a kinematic model of the robot is presented. Operation of the prototype in pipes with a cross-section greater than 210 mm is described. Laboratory tests that validate the design and enable determination of energy consumption of the robot are presented.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Michał Ciszewski
Michał Wacławski
Tomasz Buratowski
Mariusz Giergiel
Krzysztof Kurc

Download PDF Download RIS Download Bibtex

Abstract

In the Upper Silesian Coal Basin (Poland), numerous former workings have been left unprotected after the liquidation of mines in the 19th and the beginning of the 20th century. The workings have been located at low depths. The paper presents the results of strength tests of wood samples acquired from linings in former workings, and the obtained results have been compared to the results achieved in tests of samples of wood intended to be used in a reconstruction of a historic gallery. The tests consisted in determining the bending strength of wood in compliance with the applicable Polish standard. The results showed that the wood from historic mines was characterised by high variability of bending strength – usually much lower than that of the wood intended for construction. Too low bending strength of timber may result in caving in shallow excavation and lead to sinkhole creation on the surface.
Go to article

Authors and Affiliations

Piotr Strzałkowski
1
ORCID: ORCID
Grzegorz Dyduch
1
ORCID: ORCID

  1. Silesian University, Faculty of Mining, Safety Engineering and Industrial Automation, 2 Akademicka Str., 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more