Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The preliminary stage of asphalt mixture production involves the drying and dedusting of coarse aggregates. The most common types of coarse aggregates used are limestone and basalt. In the process of drying and dedusting the dryer filter accumulates large quantities of waste in the form of mineral powder.

This paper introduces an investigation into limestone powder waste as a potential microfiller of polymer composites. Physical characteristics such as the granulation the of powder collected from the filter - in terms of the season of its collection and the type of input materials used - were analysed. A scanning electron microscope (SEM) was used for the investigation described within this paper. The obtained results were compared against those of other materials which can be used as polymer composites microfillers.

Go to article

Authors and Affiliations

M. Kępniak
P. Woyciechowski
W. Franus
Download PDF Download RIS Download Bibtex

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.

Go to article

Authors and Affiliations

P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

The introduction of the sustainable development elements in the construction industry leads to finding new ways of using waste minerals that are difficult in storage and recycling. Coal combustion products have been already introduced into building materials as a part of cement or concrete but they have been thought insufficiently compatible with the polymer-cement binders [7]. The paper presents results of the mechanical properties of polymer-cement composites containing two types of mineral additives: waste perlite powder that is generated during the perlite expanding process, and calcium fly ash which is the byproduct of burning coal in conventional furnaces. Mechanical tests of polymer-cement composites modified with wastes were carried out after 28 and 90 days of curing. As a part of preliminary study specific surface area and particle size distribution of mineral wastes were determined.

Go to article

Authors and Affiliations

B. Jaworska
J.J. Sokołowska
P. Łukowski
J. Jaworski

This page uses 'cookies'. Learn more