Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The current solutions for pose estimation problems using coplanar feature points (PnP problems) can be divided into non-iterative and iterative solutions. The accuracy, stability, and efficiency of iterative methods are unsatisfactory. Therefore, non-iterative methods have become more popular. However, the non-iterative methods only consider the correspondence of the feature points with their 2D projections. They ignore the constraints formed between feature points. This results in lower pose estimation accuracy and stability. In this work, we proposed an accurate and stable pose estimation method considering the line constraints between every two feature points. Our method has two steps. In the first step, we solved the pose non-iteratively, considering the correspondence of the 3D feature points with their 2D projections and the line constraints formed by every two feature points. In the second step, the pose was refined by minimizing the re-projection errors with one iteration, further improving accuracy and stability. Simulation and actual experiment results show that our method’s accuracy, stability, and computational efficiency are better than the other existing pose estimation methods. In the -45° to +45° measuring range, the maximum angle measurement error is no more than 0.039°, and the average angle measurement error is no more than 0.016°. In the 0 mm to 30 mm measuring range, the maximum displacement measurement error is no more than 0.049 mm, and the average displacement measurement error is no more than 0.012 mm. Compared to other current pose estimation methods, our method is the most efficient based on guaranteeing measurement accuracy and stability. Keywords:
Go to article

Authors and Affiliations

Zhang Zimiao
1
Zhang Hao
1
Zhang Fumin
2
Zhang Shihai
1

  1. School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin, China
  2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
Download PDF Download RIS Download Bibtex

Abstract

Coagulation is a process during which a flocculent suspension may sediment. It is characterized by its polydisperse structure. There are three main fractions of sedimentation particles after coagulation: spherical, non-spherical and porous agglomerates. Each of the fractions sediments in a different manner, for different forces act on them, due to interactions between the particles, inhibition or entrainment of neighboring particles. The existing sedimentation models of polydisperse suspension do not consider the flocculation process, i.e. the change of one particle into another during sedimentation, resulting from their agglomeration. The presented model considers the shape of particles and flocculation, which is a new approach to the description of the mathematical process of sedimentation. The velocity of sedimentation depends on the concentration of particles of a given fraction in a specific time step. Following the time step, the heights of individual fractions are calculated. Subsequently, new concentration values of individual fractions are determined for the correspondingly reduced volume of occurrence of a given fraction in the volume analyzed, taking particle flocculation into consideration. The new concentration values obtained in this way allow to recalculate the total sedimentation rates for the next time step. Subsequent iterations allow for numerical simulation of the sedimentation process.
Go to article

Bibliography

  1.  Z. Su et al., “Coagulation of Surface water: Observations of the significance of biopolymers,” Water Res., vol. 126, pp. 144–152, 2017, doi: 10.1016/j.watres.2017.09.022.
  2.  L. Postolachi et al., “Improvement of coagulation process for the Prut River water treatment using aluminum sulphate,” Chem. J. Mold., vol. 10, no. 1, pp. 25–32, 2015, doi: 10.3923/jest.2017.268.275.
  3.  D. Mroczko and I. Zimoch, “Coagulation of pollutions occurring in surface waters during time of dynamic water flow,” Ecol. Eng., vol. 19, no. 2, pp. 15–22, 2018, doi: 10.12911/22998993/118273.
  4.  S. Janiszewska, “Comparison of coagulation methods and electrocoagulation in purification model gray water,” Eko-Dok, vol. 26, pp. 223– 229, 2012.
  5.  I. Krupińska and A. Konkol, “The influence of selected technological parameters on the course and effectiveness of coagulation in graund water treatment”, Uniwersytet Zielonogórski, Zeszyty Naukowe, Environmental Egineering, vol. 37, no. 157, pp. 36–52, 2015.
  6.  T.E. Dutkiewicz, Fizykochemia powierzchni, Wydawnictwa Naukowo-Techniczne, Warsaw, 1998.
  7.  R. Wardzyńska, L. Smoczyński, R. Wolicki, B. Załęska-Chróst, and Z. Bukowski, “Computer simulation of flocculation and chemical coagulation,” Ecol. Chem. Eng., vol. 17, no. 12, pp.  1663–1672, 2010.
  8.  B. Joon Lee and F. Molz, “Numerical simulation of turbulenceinduced flocculation and sedimentation in a flocculent-aided sediment retention pond,” Environ. Eng. Res., vol. 19, no. 2, pp. 165–174, 2014, doi: 10.4491/eer.2014.19.2.165.
  9.  M.A. Goula, M. Kostoglou, D.T. Karapantsios, and I.A. Zoubolis, “A CFD methodology for the design of sedimentation tanks in potable water treatment, Case study: The influence of a feed flow control baffle,” Chem. Eng. J., vol. 140, pp. 110–121, 2008, doi: 10.1016/j. cej.2007.09.022.
  10.  L.A. Kowal and M. Świderska-Bróż, Water Treatment, Polish Scientific Publishers PWN, Warsaw–Wroclaw, 2000.
  11.  P.W. Atkins, Physical chemistry, Polish Scientific Publishers PWN, Warsaw, 2007.
  12.  W.T. Hermann, Physical chemistry, Wydawnictwo lekarskie PZWL, Warsaw, 2007.
  13.  S. Berres, R. Bürger, and M.E. Tory, “Applications of polydisperse sedimentation models,” Chem. Eng. J., vol. 111, no.  2–3, pp. 105–117, 2005.
  14.  R. Błażejewski, Sedimentation of solid particles. Fundamentals of theory with examples of applications, Polish Scientific Publishers PWN, Warsaw, 2015.
  15.  J. Bandrowski, H. Merta, and J. Zioło, Sedimentation of suspensions. Rules and design, Silesian University of Technology Publisher, Gliwice, 1995.
  16.  M. Dziubiński and J. Prywer, Mechanics of two-phase fluids, WNT publisher, Warsaw, 2018.
  17.  Z. Orzechowski, J. Prywer, and R. Zarzycki, Fluid mechanics in engineering and environmental protection, Scientific and Technical Publishers, Warsaw 2009.
  18.  K.D. Basson, S. Berres, and R. Bürger, “On models of polydisperse sedimentation with particle-size-specific hindered-settling factors,”Appl. Math. Modell., vol. 33, no. 4, pp. 1815–1835, 2009, doi: 10.1016/j.apm.2008.03.021.
  19.  M. Bargieł, A.R. Ford, and M.E. Tory, “Simulation of sedimentation of polydisperse suspensions: A particle-based Approach,” AIChE J., vol. 51, no. 9, pp. 2457–2468, 2005.
  20.  S.P. Antal, R.T. Lahey, and L.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, vol. 17, pp. 635, 1991, doi: 10.1016/0301-9322(91)90029-3.
  21.  J.F. Richardson and W.N. Zaki, “Sedimentation and Fluidization. Part 1,” Trans. Inst. Chem. Eng., vol. 32, pp. 35–53, 1954.
  22.  J.F. Richardson, J.H. Harker, and J.R. Backhurst, Chemical engineering, vol.2 – Particle Technology and Separtion Processes, Butterworth- Heinemann, 2002.
  23.  J. Garside and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., vol. 16, pp. 206–214, 1977, doi: 10.1021/i260062a008.
  24.  J. Happel and N. Epstein, “Viscous flow in multiparticle systems: cubical assemblage of uniform spheres,” Ind. Eng.Chem., vol. 46, pp. 1187–1194, 1954.
  25.  F. Barnea and J. Mizrahi, “A generalized approach of fluid dynamics of particulate system. Part I. General correlation for fluidization and sedimentation in solid multiparticle systems,” J. Fluid Mech., vol. 52, no. 2, pp. 245–268, 1973.
  26.  E. Barnea and J. Mizrahi, “A generalized approach to the fluid dynamics of particulate systems: General correlation for fluidization and sedimentation in solid multiparticle systems,” The Chem. Eng. J., vol. 5, no. 2, pp. 171–189, 1973, doi: 10.1016/0300-9467(73)80008-5.
  27.  P.M. Biesheuvel, H. Verweij and V. Breedveld, “Evaluation of instability criterion for bidisperse sedimentation,” AIChE J., vol. 47, no. 1, pp. 45–52, 2001, doi: 10.1002/aic.690470107.
  28.  V.S. Patwardhan and C. Tien, “Sedimentation and fluidization in solid-liquid systems: A simple approach,” AIChE J., vol. 31, no. 1, pp. 146–149, Jan. 1985, doi: 10.1002/aic.690310117.
  29.  M. Syamlal and T.J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” Int. J. Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988, doi: 10.1016/0301-9322(88)90023-7.
  30.  T.N. Smith, “The differential sedimentation of particles of two different spacies,” Inst. Chem. Eng. Trans., vol. 43, pp. T69–T73, 1965.
  31.  P. Krishnamoorthy, “Sedimentation model and analysis for differential settling of two-particle-size suspensions in the Stokes region,” Int. J. Sediment Res., vol. 25, no. 2, pp. 119–133, 2010, doi: 10.1016/S1001-6279(10)60032-7.
  32.  J. Bandrowski, H. Merta and J. Zioło, Sedimentation of suspensions, principles and design, Silesian University of Technology Publisher, Gliwice, 1995.
  33.  J.F. Richardson and F.A. Shabi, “The determination of concentration distribution on sedimenting suspension using radioactive solids,” Transactions of the Institution of Chemical Engineers, vol. 38, pp. 33–41, 1960.
  34.  T.N. Smith, “The differential sedimentation of particles of various species,” Transactions of the Institution of Chemical Engineers, vol. 45, pp. T311–T313, 1967.
  35.  B. Xue and Y. Sun, “Modeling of sedimentation of polydisperse spherical beads with a broad size distribution,” Chem. Eng. Sci., vol. 58, pp. 1531–1543, 2003, doi: 10.1016/S0009-2509(02)00656-5.
  36.  Y. Zimmels, “Theory of hindered sedimentation of polydisperse mixtures,” AIChE J., vol. 29, no. 4, pp. 669–676, 1983, doi: 10.1002/ AIC.690290423.
  37.  J. Happel, “Viscus flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles,” AIChE J., vol. 4, no. 2, pp. 197–201, 1958.
  38.  S.F. Chien, “Settling Velocity of Irregularly Shaped Particles, Society of Petroleum Engineers,” SPE Drill. Complet., vol. 4, no. 04, pp. 281–289, 1994, doi: 10.2118/26121-PA.
  39.  G.H. Ganser, “A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles,” Powder Technol., vol. 77, no.  2, pp. 143–152, 1993, doi: 10.1016/0032-5910(93)80051-B.
  40.  A. Haider and O. Levenspiel, “Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles,” Powder Technol., vol. 58, no. 1, pp. 63–70, 1989, doi: 10.1016/0032-5910(89)80008-7.
  41.  L. Rosendahl, “Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow,” Appl. Math. Modell., vol. 24, no. 1, pp. 11‒25, 2000, doi: 10.1016/S0307-904X(99)00023-2.
  42.  M. Zastawny, G. Mallouppas, F. Zhao, and B. van Wachem, “Derivation of drag and lift force and torque coefficients for nonspherical particles in flows,” Int. J. Multiphase Flow, vol. 39, pp 227‒239, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.09.004.
  43.  A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, June 2008, doi: 10.1016/j.powtec.2007.08.021.
  44.  R. Barati, S.A. Neyshabouri, and G. Ahmadi, “Issues in Eulerian– Lagrangian modeling of sediment transport under saltation regime,” Int. J. Sediment Res., vol. 33, no. 4, pp. 441–461, 2018, doi: 10.1016/j.ijsrc.2018.04.003.
  45.  B. Oesterle and B. Dinh, ”Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no.1, pp. 16–22, 1998, doi: 10.1007/s003480050203.
  46.  I. Mema, V.V. Mahajan, B W. Fitzgerald, and J.T. Padding, “Effect of lift force and hydrodynamic torque on fluidisation of nonspherical particles,” Chem. Eng. Sci., vol. 195, no. 23, pp. 642– 656, 2019, doi: 10.1016/j.ces.2018.10.009.
  47.  S.K.P. Sanjeevi, J.A.M. Kuipers, and J.T. Padding, “Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers,” Int. J. Multiphase Flow, vol.  106, pp. 325–337, 2018, doi: 10.1016/j.ijmultiphaseflow.2018.05.011.
  48.  S.F. Hoerner, Fluid-dynamic drag, Published by the Autor, 1965.
  49.  R. Ouchene, M. Khalij, B. Arcen, and A. Tanière, “A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers,” Powder Technol., vol. 303, pp. 33–43, 2016, doi: 10.1016/j.powtec.2016.07.067.
  50.  M. Leva, M. Weintraub, M. Grummer, M. Pollchik, and H.H. Storsh, “Fluid flow through packed and fluidized systems,” Bull. U. S. Min. Bur., vol. 504, 1951.
  51.  V. Saritha, N. Srinivas, and N.V. Srikanth Vuppala, “Analysis and optimization of coagulation and ?occulation process,” Appl. Water Sci., vol. 7, pp. 451–460, 2017, doi: 10.1007/s13201-014-0262-y.
  52.  M. Smoluchowski, “Versuch einer mathematischen theorie der koagulationskinetic,” Kolloider Lsungen Zeitschrift für Physikalische Chemie, vol. 92, pp. 129–168, 1917.
  53.  H. Müller, “Zur allgemeinen teorie der raschen koagulation,” Kolloidbeihefte, vol. 27, pp. 223‒250, 1928.
  54.  F.S. Torrealba, A Continuous mathematical model of the one-dimensional sedimentation process of flocculated sediment particles, University of Kentucky Doctoral Dissertations, 2010.
  55.  D. Miedzińska, T. Niezgoda, E. Małek, and Z. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 499–505, doi: 10.2478/bpasts-2013-0049.
Go to article

Authors and Affiliations

Mariusz Rząsa
1
ORCID: ORCID
Ewelina Łukasiewicz
2
ORCID: ORCID

  1. Department of Computer Science, Opole University of Technology, ul. Oleska 48, 45-052 Opole, Poland
  2. Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. St. Mikołajczyka 5, 45-271 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

In multi-axis motion control systems, the tracking errors of single axis load and the contour errors caused by the mismatch of dynamic characteristics between the moving axes will affect the accuracy of the motion control system. To solve this issue, a biaxial motion control strategy based on double-iterative learning and cross-coupling control is proposed. The proposed control method improves the accuracy of the motion control system by improving individual axis tracking performance and contour tracking performance. On this basis, a rapid control prototype (RCP) is designed, and the experiment is verified by the hardware and software platforms, LabVIEW and Compact RIO. The whole design shows enhancement in the precision of the motion control of the multiaxis system. The performance in individual axis tracking and contour tracking is greatly improved.

Go to article

Authors and Affiliations

Wan Xu
Jie Hou
Wei Yang
Cong Wang
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the improved methodology for the direct calculation of steady-state periodic solutions for electromagnetic devices, as described by nonlinear differential equations, in the time domain. A novel differential operator is developed for periodic functions and the iterative algorithm determining periodic steady-state solutions in a selected set of time instants is identified. Its application to steady-state analysis is verified by an elementary example. The modified algorithm reduces the complexity of steady-state analysis, particularly for electromagnetic devices described by high-dimensional nonlinear differential equations.

Go to article

Authors and Affiliations

T.J. Sobczyk
M. Radzik
Download PDF Download RIS Download Bibtex

Abstract

The use of elastic bodies within a multibody simulation became more and more important within the last years. To include the elastic bodies, described as a finite element model in multibody simulations, the dimension of the system of ordinary differential equations must be reduced by projection. For this purpose, in this work, the modal reduction method, a component mode synthesis based method and a moment-matching method are used. Due to the always increasing size of the non-reduced systems, the calculation of the projection matrix leads to a large demand of computational resources and cannot be done on usual serial computers with available memory. In this paper, the model reduction software Morembs++ is presented using a parallelization concept based on the message passing interface to satisfy the need of memory and reduce the runtime of the model reduction process. Additionally, the behaviour of the Block-Krylov-Schur eigensolver, implemented in the Anasazi package of the Trilinos project, is analysed with regard to the choice of the size of the Krylov base, the blocksize and the number of blocks. Besides, an iterative solver is considered within the CMS-based method.

Go to article

Authors and Affiliations

Thomas Volzer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

Iterative Learning Control (ILC) is a well-known method for control of systems performing repetitive jobs with high precision. This paper presents Constrained Output ILC (COILC) for non-linear state space constrained systems. In the existing literature there is no general solution for applying ILC to such systems. This novel method is based on the Bounded Error Algorithm (BEA) and resolves the transient growth error problem, which is a major obstacle in applying ILC to non-linear systems. Another advantage of COILC is that this method can be applied to constrained output systems. Unlike other ILC methods the COILC method employs an algorithm that stops the iteration before the occurrence of a violation in any of the state space constraints. This way COILC resolves both the hard constraints in the non-linear state space and the transient growth problem. The convergence of the proposed numerical procedure is proved in this paper. The performance of the method is evaluated through a computer simulation and the obtained results are compared to the BEA method for controlling non-linear systems. The numerical experiments demonstrate that COILC is more computationally effective and provides better overall performance. The robustness and convergence of the method make it suitable for solving constrained state space problems of non-linear systems in robotics.

Go to article

Authors and Affiliations

Kaloyan Yovchev
Kamen Delchev
Evgeniy Krastev
Download PDF Download RIS Download Bibtex

Abstract

In the theory of open systems one mentions equifinality – by drawing from various sources, one may reach the same results. The new linguistic phenomenon, which emerged due to equifinality, upsets the stability of the system, causes various types of re‑evaluation, therefore the same source causes different results. Thus, one may speak about equipotentiality. In her article, the author demonstrates how the adverbia which emerged in the late part of the Proto‑Slavic period influenced the word‑formative system of the Polish language. She focuses on the adverbs with the formants ‑o and ‑e, a class which was thriving already in the earliest period of the written Polish language (more than 500 units in the Old Polish period).
In adjectives, the adverb influenced the gradual decline of intensifying prefixes prze‑ ( przedobry ‘extremely good’) and nad‑ ( nadpełny ‘Latin: superplenus’), and on the basis of the elative na(j)‑ and ‑ szy there emerged the morphosyntactic category of grade. The development of the category of disintensification took a different direction.
Adverbs were one of the reasons which caused the decline of diminutive and augmentative verbs. The traces of these categories are preserved in the following words used in the modern Polish language: głaskać ‘to fondle, to caress, to stroke gently’, nadskakiwać ‘to fawn, to flatter, to toady’. Adverbs also influenced the gradual decline of obsolete iterativa, their properties were assumed by adverbs ( palać – często palić ‘to smoke often’).
Many original adverbs shifted to the class of functional expressions, assuming a metatextual role – of commenting upon one’s own, current utterances. Sometimes they perform the functions of thematic operators ( Intelektualnie Marek ma cechy lidera, emocjonalnie absolutnie nie ‘Mark has the qualities of a leader intellect‑wise, but not at all emotion‑wise); rhematic operators (particles, e.g. Janek podobno wyjechał ‘Janek supposedly went away’), appositions: A pani czytała to?Naturalnie! ‘And have you read it? – Naturally!’
Go to article

Authors and Affiliations

Krystyna Kleszczowa
1
ORCID: ORCID

  1. Uniwersytet Śląski Katowice
Download PDF Download RIS Download Bibtex

Abstract

This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the twoperiodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

Go to article

Authors and Affiliations

Tadeusz J. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

In order to control joints of manipulators with high precision, a position tracking control strategy combining fractional calculus with iterative learning control and sliding mode control is proposed for the control of a single joint of manipulators. Considering the coupling between joints of manipulators, a fractional-order iterative sliding mode cross-coupling control strategy is proposed and the theoretical proof of its progressive stability is given. The paper takes a two-joint manipulator as the research object to verify the control strategy of a single-joint manipulator. The results show that the control strategy proposed in this paper makes the two-joint mechanical arm chatter less and the tracking more accurate. The synchronous control of the manipulator is verified by a three-joint manipulator. The results show that the angular displacement adjustment times of the three-joint manipulator are 0.11 s, 0.31 s and 0.24 s, respectively. 3.25 s > 5 s, 3.15 s of a PD cross-coupling control strategy; 2.85 s, 2.32 s, 4.22 s of a PD iterative cross-coupling control strategy; 0.14 s, 0.33 s, 0.28 s of a fractional-order sliding mode cross-coupling control strategy. The root mean square error of the position error of the designed control strategy is 6.47 × 10-6 rad, 3.69 × 10-4 rad, 6.91 × 10-3 rad, respectively. The root mean square error of the synchronization error is 3.96 × 10-4 rad, 1.36 × 10-3 rad, 7.81 × 10-3 rad, superior to the other three control strategies. The results illustrate the effectiveness of the proposed control method.

Go to article

Authors and Affiliations

Xin Zhang
Wen-Ru Lu
Liang Zhang
Wen-Bo Xu
Download PDF Download RIS Download Bibtex

Abstract

The aim of the studywas to find an effective method of ripple torque compensation for a direct drive with a permanent magnet synchronous motor (PMSM) without time-consuming drive identification. The main objective of the research on the development of a methodology for the proper teaching a neural network was achieved by the use of iterative learning control (ILC), correct estimation of torque and spline interpolation. The paper presents the structure of the drive system and the method of its tuning in order to reduce the torque ripple, which has a significant effect on the uneven speed of the servo drive. The proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The introduced iterative learning control was based on the estimation of the ripple torque and spline interpolation. The structurewas analyzed and verified by simulation and experimental tests. The elaborated structure of the drive system and method of its tuning can be easily used by applying a microprocessor system available now on the market. The proposed control solution can be made without time-consuming drive identification, which can have a great practical advantage. The article presents a new approach to proper neural network training in cooperation with iterative learning for repetitive motion systems without time-consuming identification of the motor.

Go to article

Authors and Affiliations

Adrian Wójcik
Tomasz Pajchrowski
Download PDF Download RIS Download Bibtex

Abstract

Multimedia networks utilize low-power scalar nodes to modify wakeup cycles of high-performance multimedia nodes, which assists in optimizing the power-toperformance ratios. A wide variety of machine learning models are proposed by researchers to perform this task, and most of them are either highly complex, or showcase low-levels of efficiency when applied to large-scale networks. To overcome these issues, this text proposes design of a Q-learning based iterative sleep-scheduling and fuses these schedules with an efficient hybrid bioinspired multipath routing model for largescale multimedia network sets. The proposed model initially uses an iterative Q-Learning technique that analyzes energy consumption patterns of nodes, and incrementally modifies their sleep schedules. These sleep schedules are used by scalar nodes to efficiently wakeup multimedia nodes during adhoc communication requests. These communication requests are processed by a combination of Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) models, which assist in the identification of optimal paths. These paths are estimated via combined analysis of temporal throughput & packet delivery performance, with node-to-node distance & residual energy metrics. The GWO Model uses instantaneous node & network parameters, while the GA Model analyzes temporal metrics in order to identify optimal routing paths. Both these path sets are fused together via the Q-Learning mechanism, which assists in Iterative Adhoc Path Correction (IAPC), thereby improving the energy efficiency, while reducing communication delay via multipath analysis. Due to a fusion of these models, the proposed Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks (QIBMRMN) is able to reduce communication delay by 2.6%, reduce energy consumed during these communications by 14.0%, while improving throughput by 19.6% & packet delivery performance by 8.3% when compared with standard multimedia routing techniques.
Go to article

Authors and Affiliations

Minaxi Doorwar
1
P Malathi
1

  1. SPPU, E&TC Department, India
Download PDF Download RIS Download Bibtex

Abstract

The iterative learning fault-tolerant control strategies with non-strict repetitive initial state disturbances are studied for the linear discrete networked control systems (NCSs) and the nonlinear discrete NCSs. In order to reduce the influence of the initial state disturbance in iteration, for the linear NCSs, considering the external disturbance and actuator failure, the iterative learning fault-tolerant control strategy with impulse function is proposed. For the nonlinear NCSs, the external disturbance, packet loss and actuator failure are considered, the iterative learning fault-tolerant control strategy with random Bernoulli sequence is provided. Finally, the proposed control strategies are used for simulation research for the linear NCSs and the nonlinear NCSs. The results show that both strategies can reduce the influence of the initial state disturbance on the tracking effect, which verifies the effectiveness of the given method.
Go to article

Authors and Affiliations

Fu Xingjian
1
Zhao Qianjun
1

  1. School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
Download PDF Download RIS Download Bibtex

Abstract

This issue is a typical NP-hard problem for an unrelated parallel machine scheduling problem with makespan minimization as the goal and no sequence-related preparation time. Based on the idea of tabu search (TS), this paper improves the iterative greedy algorithm (IG) and proposes an IG-TS algorithm with deconstruction, reconstruction, and neighborhood search operations as the main optimization process. This algorithm has the characteristics of the strong capability of global search and fast speed of convergence. The warp knitting workshop scheduling problem in the textile industry, which has the complex characteristics of a large scale, nonlinearity, uncertainty, and strong coupling, is a typical unrelated parallel machine scheduling problem. The IG-TS algorithm is applied to solve it, and three commonly used scheduling algorithms are set as a comparison, namely the GA-TS algorithm, ABC-TS algorithm, and PSO-TS algorithm. The outcome shows that the scheduling results of the IG-TS algorithm have the shortest manufacturing time and good robustness. In addition, the production comparison between the IG-TS algorithm scheduling scheme and the artificial experience scheduling scheme for the small-scale example problem shows that the IG-TS algorithm scheduling is slightly superior to the artificial experience scheduling in both planning and actual production. Experiments show that the IG-TS algorithm is feasible in warp knitting workshop scheduling problems, effectively realizing the reduction of energy and the increase in efficiency of a digital workshop in the textile industry.
Go to article

Authors and Affiliations

Xinfu Chi
1
ORCID: ORCID
Shijing Liu
1
Ce Li
1

  1. Dong Hua University, College of Mechanical Engineering, Shanghai 201620, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.

Go to article

Authors and Affiliations

T. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

An iterative neural network framework is proposed in this paper for the human-induced Ground Reaction Forces (GRF) replication with an inertial electrodynamic mass actuator (APS 400). This is a first approach to the systematization of dynamic load tests on structures in a purely objective, repeatable and pedestrian-independent basis. Therefore, an inversion-free offline algorithm based on Machine Learning techniques has been applied for the first time on an electrodynamic shaker, without requiring its inverse model to tackle the inverse problem of successful force reconstruction. The proposed approach aims to obtain the optimal drive signal to minimize the error between the experimental shaker output and the reference force signal, measured with a pair of instrumented insoles (Loadsol©) for human bouncing at different fre- quencies and amplitudes. The optimal performance, stability and convergence of the system are verified through experimental tests, achieving excellent results in both time and frequency domain.
Go to article

Authors and Affiliations

César Peláez-Rodríguez
1 2
ORCID: ORCID
Álvaro Magdaleno
2
Sancho Salcedo-Sanz
1
Antolín Lorenzana
2

  1. Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
  2. ITAP. Escuela de Ingenierías Industriales. Universidad de Valladolid. P.º del Cauce, 59, 47011 Valladolid, Spain
Download PDF Download RIS Download Bibtex

Abstract

The goal of paper is the development and demonstration of efficiency of algorithm for form finding of a slack cable notwithstanding of the initial position chosen. This algorithm is based on product of two sets of coefficients, which restrict the rate of looking for cable geometry changes at each iteration. The first set restricts the maximum allowable change of absolute values of positions, angles and axial forces. The second set takes into account whether the process is the converging one (the signs of maximal change of parameters remain the same), so that it increases the allowable changes; or it is a diverging one, so that these changes are discarded. The proposed procedure is applied to two different methods of simple slack cable calculation under a number of concentrated forces. The first one is a typical finite element method, with the cable considered as consisting of number of straight elements, with unknown positions of their ends, and it is essentially an absolute coordinate method. The second method is a typical Irvine’s like analytical solution, which presents only two unknowns at the initial point of the cable; due to the peculiarity of implementation it is named here a shooting method. Convergence process is investigated for both solutions for arbitrary chosen, even very illogical initial positions for the ACM, and for angle and force at the left end for SM as well. Even if both methods provide the same correct convergent results, it is found that the ACM requires a much lower number of iterations.
Go to article

Authors and Affiliations

Igor Orynyak
1
ORCID: ORCID
Federico Guarracino
2
ORCID: ORCID
Mariano Modano
2
ORCID: ORCID
Roman Mazuryk
1
ORCID: ORCID

  1. Department of Applied Mathematics at National Technical University Kiev Polytechnic Institute, Peremohystr, 37, Kyiv 03056, Ukraine
  2. Department of Structural Engineering at University of Naples “Federico II”, via Claudio, 21-80125 Napoli, Italy
Download PDF Download RIS Download Bibtex

Abstract

One of the most important aims of the sizing and allocation of distributed generators (DGs) in power systems is to achieve the highest feasible efficiency and performance by using the least number of DGs. Considering the use of two DGs in comparison to a single DG significantly increases the degree of freedom in designing the power system. In this paper, the optimal placement and sizing of two DGs in the standard IEEE 33-bus network have been investigated with three objective functions which are the reduction of network losses, the improvement of voltage profiles, and cost reduction. In this way, by using the backward-forward load distribution, the load distribution is performed on the 33-bus network with the power summation method to obtain the total system losses and the average bus voltage. Then, using the iterative search algorithm and considering problem constraints, placement and sizing are done for two DGs to obtain all the possible answers and next, among these answers three answers are extracted as the best answers through three methods of fuzzy logic, the weighted sum, and the shortest distance from the origin. Also, using the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) and setting the algorithm parameters, thirty-six Pareto fronts are obtained and from each Pareto front, with the help of three methods of fuzzy logic, weighted sum, and the shortest distance from the origin, three answers are extracted as the best answers. Finally, the answer which shows the least difference among the responses of the iterative search algorithm is selected as the best answer. The simulation results verify the performance and efficiency of the proposed method.
Go to article

Authors and Affiliations

Hossein Ali Khoshayand
1
ORCID: ORCID
Naruemon Wattanapongsakorn
2
ORCID: ORCID
Mehdi Mahdavian
1
ORCID: ORCID
Ehsan Ganji
1
ORCID: ORCID

  1. Department of Electrical Engineering, Naein Branch, Islamic Azad University, Iran
  2. Department of Computer Engineering, King Mongkut’s University of Technology, Thonburi, 126 Prachautid Road, Bangmod, Bangkok 10140, Thailand
Download PDF Download RIS Download Bibtex

Abstract

Prediction of soft soil sub-grades settlement has been a big challenge for geotechnical engineers that are responsible for the design of roadbed embankment. The characteristics of low strength, poor permeability, high water contents, and high compressibility are dominant in soft soils, which result in a huge settlement in the case of long-term loading. The settlement prediction in soft soil subgrades of Jiehui Expressway A1, Guangdong, China, is the focus of this study. For this purpose, the necessary data of settlement is collected throughout the project execution. The numerical analysis is conducted by using the Richards model based on Linear Least Squares Iteration (LLS-I) method to calculate and predict the expected settlement. The traditional settlement prediction methods, including the hyperbolic method, exponential curve method, and pearl curve method, are applied on field settlement data of soft soil subgrades of Jiehui Expressway A1. The results show that the Richards model based on Linear Least Squares Iteration (LLS-I) method has high precision, and it has proven to be a better option for settlement prediction of soft soil sub-grades. The model analysis indicates that the mean absolute percentage error (MAPE) can be minimized as compared to other soft soil sub-grades settlement prediction methods. Hence, Richards's model-based LLS-I method has a capability for simulation and settlement prediction of soft soil subgrades.
Go to article

Authors and Affiliations

Muhammad Nadeem
1
Muhammad Akbar
2
Pan Huali
3
Li Xiaoqing
1
Ou Guoqiang
3
Azka Amin
4

  1. Graduate Student School of Civil Engineering and Mechanics, HUST, Wuhan, China
  2. PhD, Research Scholar, Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  3. Prof, PhD., Eng., Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  4. Assistant Professor, Department of Business Administration Iqra University, Main Campus, Karachi, Pakistan

This page uses 'cookies'. Learn more