Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

General lighting is the most common way of illuminating interiors and the source of electricity consumption in buildings. This fact forces the search for lighting solutions effective both for people and the environment. In this study the impact of room and luminaire characteristics on general lighting conditions and energy efficiency in interiors is considered. In rooms of different sizes and reflectances, seventeen luminaire types with various light distributions were arranged in uniform layouts. The levels of average illuminance, uniformity and normalised power density related to two horizontal working planes were calculated. The impact of working plane reduction, room index and reflectances, lighting class and luminous intensity distribution of luminaire on the considered parameters was investigated. The use of the reduced working plane resulted in the increase in the average illuminance (7.7% on average), uniformity (33% on average) and normalised power density (23% on average). The impact of the room index and lighting class on the average illuminance and normalised power density was significant while the impact of the luminaire luminous intensity distribution and room reflectances was low. The normalised power density levels of the general electric lighting in interiors, with luminaire luminous efficacy of 100 lm/W, are in the following range: 1.08‒3.42 W/m² per 100 lx. Based on these results a normalised power density level of 2 W/m² per 100 lx is recommended for designing and assessing the new general electric lighting systems in buildings.

Go to article

Authors and Affiliations

P. Pracki
Download PDF Download RIS Download Bibtex

Abstract

In 2020, an international project on residential lighting started and was implemented in four countries (Poland, Sweden, UK and Turkey). This article presents the results of a survey carried out in Poland, in the winter term between November 2020 and January 2021. A total of 125 Polish residents (59 women, 65 men, one person did not wish to specify gender) participated in the survey. A variety of data was collected on the respondents and their assessments as well as on their satisfaction with day- and artificial lighting in residential living spaces. The results from questionnaires were analyzed with STATISTICA 13.3. Descriptive statistics and Spearman rank order correlations were adopted to identify the light-related aspects, lighting patterns, and respondents’ perception of day- and artificial lighting conditions in living areas. The results revealed that satisfaction with daylighting in the living area, both in summer and winter, was significantly correlated with daylighting level, daylighting uniformity, sunlight exposure and view-out. The results also revealed that satisfaction with artificial lighting was significantly correlated with artificial lighting level, artificial lighting uniformity and color rendering. The results provide valuable information on lighting and factors that influence the luminous environment in residential living spaces.
Go to article

Authors and Affiliations

Piotr Pracki
1
ORCID: ORCID
Rengin Aslanoglu
2
Jan K. Kazak
2
ORCID: ORCID
Begüm Ulusoy
3
Sepideh Yekanialibeiglou
4

  1. Warsaw University of Technology, Electrical Power Engineering Institute, Division of Lighting Technology, Warsaw, Poland
  2. Wrocław University of Environmental and Life Sciences, Institute of Spatial Management, Wrocław, Poland
  3. University of Lincoln, Interior Architecture and Design, School of Design, Lincoln, UK
  4. Bilkent University, Department of Interior Architecture and Environmental Design, Faculty of Art, Design and Architecture, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Lighting technologies developed significantly in the last decade. New LED light sources, dedicated luminaires and improved lighting control techniques gave rise to new possibilities in improving energy efficiency of lighting solutions. The article is an overview of interior, road and exterior architectural object lighting design strategies. It also presents design considerations that directly impact lighting conditions and energy efficiency. Practical examples of the application of basic design strategies, accompanied by the obtained energy results, are also depicted. Issues discussed in the article may be useful in researching and designing interior and road lighting, as well as floodlighting. They can also be useful in planning and implementing strategies aimed at improving lighting conditions and energy efficiency of lighting solutions.

Go to article

Authors and Affiliations

P. Pracki
A. Wiśniewski
D. Czyżewski
R. Krupiński
K. Skarżyński
M. Wesołowski
A. Czaplicki
Download PDF Download RIS Download Bibtex

Abstract

Directionality of light and modelling effects impact lighting quality in interiors. The modelling effects depend on luminaires’ photometric characteristics and their layout but also on interior size and reflectance. The objective of this research was to evaluate lighting design limitations and impact of interior and luminaires’ characteristics on the modelling effects, as well as elaborate a prediction method of the modelling effects in interior lighting. The General Index of Modelling was used for the analysis of the modelling effects in interiors. The implementation of the research objectives was based on the simulation and statistical analysis. 432 situations, varied interior size and reflectance, lighting class, luminaire downward luminous intensity distribution and layout were considered. The results show that achieving the required range of the General Index of Modelling in interior lighting is substantially limited. Luminaires’ layout impacts the General Index of Modelling the most. The elaborated multiple linear regression models can have a practical use for interior lighting design and analysis in terms of obtaining therequired range of the General Index of Modelling.
Go to article

Authors and Affiliations

Piotr Pracki
ORCID: ORCID
Paulina Komorzycka
Download PDF Download RIS Download Bibtex

Abstract

The development of technology and design of light management systems remains dynamic. Among all the benefits offered by these systems, the most valuable might definitely be the possibility of saving energy consumption. Knowing the value of energy savings is the key factor that users need to know before deciding to use a lighting management system (the type of light management system). For this purpose, it is useful to simulate the operation of the lighting control system, for example in the DIALux program. Such simulation helps evaluate potential savings in electricity consumption using the proposed lighting control system. In the DIALux program, it is possible to change the luminous flux value of luminaires. In such a case, it becomes possible to semi-simulate the light management system’s operation as we don’t receive actual information on reducing installed power of the lighting system during reduction of the luminous flux value of luminaires. This article shows what type of technical data are important to use for the DIALux program to properly and accurately simulate light management systems and to receive accurate data on energy saving. It also presents the results of photometrical and electric parameter measurements (Φ – luminous flux, P – power, PF – power factor, THDi – total harmonic distortion of current). The article discusses the power control characteristics obtained on the basis of these measurements and explores the source of differences between simulation of energy saving calculations and real measured energy savings. An existing lighting control system installed in an office reception area was used to compare calculations with the real value of energy consumption reduction. The impact of electronic power and control systems on electrical network parameters is also an important problem mentioned in this article. It also explores the effect of power regulation of LED luminaires and LED modules on the value of the power factor and total harmonic distortion (current) value (THDi).

Go to article

Authors and Affiliations

A. Wiśniewski

This page uses 'cookies'. Learn more