Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Bibliography

[1] Hou C., Zhu M., Chen Y., Cai X., Pre-filter phase-locked loop: principles and effects with inter- harmonic perturbation, IET Renewable Power Generation, vol. 14, no. 16, pp. 3088–3096 (2020), DOI: 10.1049/iet-rpg.2020.0448.

[2] Jove E., Gonzalev C.J.M., Casteleiro R.J.L. et al., An intelligent system for harmonic distortions detection in wind generator power electronic devices, Neurocomputing, vol. 456, pp. 609–621 (2021), DOI: 10.1016/j.neucom.2020.07.155.

[3] Altintasi C., Aydin O., Taplamacioglu M.C. et al., Power system harmonic and interharmonic estima- tion using Vortex Search Algorithm, Electric Power Systems Research, vol. 182, pp. 106187 (2020), DOI: 10.1016/j.epsr.2019.106187.

[4] Sun Y., Lin Y., Wang Y. et al., Theory of symmetric winding distributions and a general method for winding MMF harmonic analysis, IET Electric Power Applications, vol. 14, no. 13 (2021), DOI: 10.1049/iet-epa.2020.0553.

[5] Cao Q., Shen Q.T., An improved �� �� ����harmonic current detecting method and digital LPF filter’s study, Techniques of Automation and Applications, vol. 29, no. 3, pp. 74–76 (2010), http://en.cnki.com.cn/Article_en/CJFDTotal-ZDHJ201003022.htm.

[6] Paplinski J.P., Cariow A., Fast 10-Point DFT Algorithm for Power System Harmonic Analysis, Applied Sciences, vol. 11, no. 15, p. 7007 (2021), DOI: 10.3390/app11157007.

[7] Wu J.Z., Mei F., Chen C., Power system harmonic detection method based on empirical wavelet transform, Power System Protection and Control, vol. 48, no. 6, pp. 136–143 (2020), DOI: 10.19783/j.cnki.pspc.190470.

[8] Li J., Lin H., Teng Z. et al., Digital prolate spheroidal window-based S-transform for time-varying harmonic analysis, Electric Power Systems Research, vol. 187 (2020), DOI: 10.1016/j.epsr.2020.106512.

[9] Zhang Y.L., Chen H.W., Parameter identification of harmonics and inter-harmonics based on ceemd- wpt and Prony algorithm, Power System Protection and Control, vol. 46, no. 12, pp. 115–121 (2018), DOI: 10.7667/PSPC170866.

[10] Yang Y.K., Yang M.Y., Application of prony algorithm in parameter identification of harmon- ics and inter-harmonics, Proceedings of the CSU-EPSA, vol. 24, no. 3, pp. 121–126 (2012), http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLZD201203024.htm.

[11] Zhang Y., Fan W., Zhang Q., Li X., Harmonic separation from grid voltage with EEMD-ICA and SVD, Computer Measurement and Control, vol. 27, no. 3, pp. 39–43 (2019), http://www.jsjclykz.com/ ch/reader/view_abstract.aspx?file_no=201809061095.

[12] Chen Q., Cai W., Sun L. et al., Harmonic detection method based on VMD, Electrical Measurement and Instrumentation, vol. 55, no. 2, pp. 59–65 (2018), https://doi.org/10.1088/1742-6596/2095/1/012057.

[13] Thirumala K., Umarikar A.C., Jian T., Estimation of single-phase and three -phase power -quality indices using empirical wavelet transform, IEEE Transactions on Power Delivery, vol. 30, no. 1, pp.445–454 (2015), DOI: 10.1109/TPWRD.2014.2355296.

[14] Desai V.A., Rathore S., Harmonic detection using Kalman filter, In Proceedings of the 2016 Interna- tional Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, pp. 858–863 (2016), DOI: 10.1109/ICEEOT.2016.7754808.

[15] Tiyarachakun S., Areerak K.L., Areerak K.N., Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design for Shunt Active Power Filter, Model. Simul. Eng., pp. 1–20 (2014), DOI: 10.1155/2014/381760.

[16] Habrouk M., Darwish M.K., Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs, IEEE Proc. Electr. Power Appl., vol. 148, pp. 21–28 (2001), DOI: 10.1049/ip-epa:20010014.

[17] Karimi H., Karimi G.M., Reza I.M., Bakhshai A.R., An adaptive filter for synchronous extraction of har- monics and distortions, IEEE Trans. Power Deliv., vol. 18, pp. 1350–1356 (2003), DOI: 10.1515/ijeeps- 2013-0145.

[18] Musa S., Mohd M.A., Hoon Y., Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter, Energies, vol. 10, no. 758 (2017), DOI: 10.3390/en10060758.

[19] Narongrit T., Areerak K.L., Areerak K.N., A New Design Approach of Fuzzy Controller for Shunt Active Power Filter, Electr. Power Compon. Syst., vol. 43, pp. 685–694 (2015), DOI: 10.1080/ 15325008.2014.996680.

[20] Sujitjorn S., Areerak K.L., Kulworawanichpong T., The DQ Axis with Fourier (DQF) Method for Harmonic Identification, IEEE Trans. Power Deliv., vol. 22, pp. 737–739 (2007), DOI: 10.1109/TP- WRD.2006.882465.

[21] Daubechies I., Jianfeng L., Synchrosqueezed wavelet transforms: An empirical mode decomposition- like tool, Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243–261 (2011), DOI: 10.1016/j.acha.2010.08.002.

[22] Li L., Cai H.Y., Jiang Q.T., Ji H.B., Adaptive synchrosqueezing transformwith a time-varying parameter for non-stationary signal separation, Applied and Computational Harmonic Analysis, vol. 49, no. 3, pp. 1884–2020 (2019), DOI: 10.1016/j.acha.2019.06.002.


[23] Gang Y., Zhonghu W., Ping Z., Zhen L., Local maximum synchrosqueezing transform: An energy- concentrated time-frequency analysis tool, Mechanical Systems and Signal Processing, vol. 117, pp. 537–552 (2019), DOI: 10.1016/j.ymssp.2018.08.006.

[24] Lin L., Haiyan C., Qiangtang J., Hongbing J., An empirical signal separation algorithm for multicom- ponent signals based on linear time-frequency analysis, Mechanical Systems and Signal Processing. vol. 121, pp. 791–809 (2019), DOI: 10.1016/j.ymssp.2018.11.037.

[25] Rasoul M.M., Alan F.L., Yunwei L., Adaptive control of an active power filter for harmonic suppres- sion and power factor correction, International Journal of Dynamics and Control, pp. 1–10 (2021), DOI: 10.1007/s40435-021-00825-0.

[26] Avalos O., Cuevas E., Becerra H.G. et al., Kernel Recursive Least Square Approach for Power System Harmonic Estimation, Electric Power Components and Systems, vol. 48, no. 16–17, pp. 1708–1721 (2021), DOI: 10.1080/15325008.2021.1908457.

[27] Mert A., Celik H.H., Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform, Biomedizinische Technik. Biomedical Engineering, vol. 66, no. 4, pp. 345–352 (2021), DOI: 10.1515/bmt-2020-0295.

[28] Yang C., Ban L., Research on Harmonic Detection System Based on Wavelet Packet Transform, IOP Conf. Series: Journal of Physics: Conf. Series, vol. 1314, no. 012038 (2019), DOI: 10.1088/1742-6596/1314/1/012038.

[29] Gong M.F. et al., A New Method to Detect Harmonics and Inter-Harmonics Based on Hilbert Marginal Spectrum, Applied Mechanics and Materials, vol. 229–231, pp. 1060–1063 (2012), DOI: 10.4028/www.scientific.net/AMM.229-231.1060.

[30] Yu M., Wang B., Wang W.B. et al., An inter-harmonic detection method based on synchrosqueezing wavelet transform, Proceedings of the CSEE, vol. 36, no. 11, pp. 2944–2951 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.11.010.

[31] Chang G.W. et al., A Hybrid Approach for Time-Varying Harmonic and Interharmonic Detection Using Synchrosqueezing Wavelet Transform, Applied Sciences, vol. 11, no. 2, pp. 752 (2021), DOI: 10.3390/app11020752.

[32] Khoa N.M., Le V.D., Tung D.D., Toan N.A., An advanced IoT system for monitoring and analysing chosen power quality parameters in micro-grid solution, Archives of Electrical Engineering, vol. 70, no. 1, pp. 173–188 (2021), DOI: 10.24425/aee.2021.136060.

[33] Yudaev I.V., Rud E.V., Yundin M.A., Ponomarenko T.Z., Isupova A.M., Analysis of the harmonic composition of current in the zero-working wire at the input of the load node with the prevailing non-linear power consumers, Archives of Electrical Engineering, vol. 70, no. 2, pp. 463–473 (2021), DOI: 10.24425/aee.2021.136996.


Go to article

Authors and Affiliations

Lin Sun
1
Jing Song
2
Yan Jin
1

  1. Wuchang University of Technology, China
  2. National University of Defense Technology, China
Download PDF Download RIS Download Bibtex

Abstract

A novel magnetically-coupled energy storage inductor boost inverter circuit for renewable energy and the dual-mode control strategy with instantaneous value feedback of output voltage are proposed. In-depth research and analysis on the circuit, control strategy, voltage transmission characteristics, etc., providing the parameter design method of magnetically-coupled energy storage inductors and output filter. The circuit topology is cascaded by the input source ��in, the input filter ��in, a single-phase inverter bridge with a magnetically-coupled energy storage inductor, and a CL filter; The control strategy serves the output voltage as a reference to achieve the switch of step-down and step-up modes smoothly. The simulation results of a 1000 VA 100–200 VDC, 220 V 50 Hz AC inverter show that the proposed inverter can realize single-stage boost power conversion, which can adapt to resistive, capacitive and inductive loads, has high power density and low output waveform distortion. It has good application prospects in small and medium-capacity single-phase inverter occasions with low input voltage.
Go to article

Bibliography

[1] Hussain H.M., Narayanan A., Nardelli P.H.J., Yang Y., What Is Energy Internet? Concepts, Technologies, and Future Directions, IEEE Access., vol. 8, pp. 183127–183145 (2020), DOI: 10.1109/access.2020.3029251.

[2] Tao Z., Jiahui J., Daolian C., An efficient and low-cost DMPPT approach for photovoltaic sub-module based on multi-port DC converter, Renewable Energy, vol. 178, pp. 1144–1155 (2021), DOI: 10.1016/j.renene.2021.06.134.

[3] Jiang J., Zhang T., Chen D., Analysis, Design, and Implementation of a Differential Power Processing DMPPT With Multiple Buck–Boost Choppers for Photovoltaic Module, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10214–10223 (2021), DOI: 10.1109/tpel.2021.3063230.

[4] Xianglin L., Zhiwei X., Xueyu Y., Lixia Z., Wenzhong M., Wei H., Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection, IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11726–11738 (2021), DOI: 10.1109/tepl.2021.3073137.

[5] Xianglin L., Zhiwei X., Lixia Z., Wei H., A low-complexity three-vector-based model predictive torque control for SPMSM, IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 13002–13012 (2021), DOI: 10.1109/TPEL.2016.2532387.

[6] Rahbar K., Chai C.C., Zhang R., Energy cooperation optimization in microgrids with renew- able energy integration, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493 (2018), DOI: 10.1109/tsg.2016.2600863.


[7] Quint R. et al., Transformation of the grid: the impact of distributed energy resources on bulk power systems, IEEE Power and Energy Magazine, vol. 17, no. 6, pp. 35–45 (2019), DOI: 10.1109/mpe. 2019.2933071.

[8] Salem Q., Liu L., Xie J., Dual operation mode of a transformerless h-bridge inverter in low- voltage microgrid, IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5289–5299 (2019), DOI: 10.1109/tia.2019.2917807.

[9] Hanchao Z., Daolian C., A single-stage isolated charging/discharging DC-AC converter with sec- ond harmonic current suppression in distributed generation systems, IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, pp. 4427–4432 (2017).

[10] Liu S., He Y., Wang G., Wang M., Power Decoupling Control for Boost-Type Single-Phase Inverter with Active Power Buffer, 2019 IEEE Energy Conversion Congress and Exposition, Maryland, USA, pp. 2280–2285 (2019).

[11] Stawiarski Ł., Piróg S., Active power decoupling topology for AC-DC and DC-AC single-phase systems with decoupling capacitor minimization, Archives of Electrical Engineering, vol. 67, no. 1, pp. 193–205 (2018), DOI: 10.24425/aee.2018.119001.

[12] Xu S., Chang L., Shao R., Single-phase voltage source inverter with voltage Boosting and power decoupling capabilities, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2977–2988 (2020), DOI: 10.1109/jestpe.2019.2936136.

[13] Chen Z., Wu Q., Yuan Y., A novel zero-voltage-switching push–pull high-frequency-link single-phase inverter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 421–434 (2016), DOI: 10.1109/jestpe.2015.2505171.

[14] Watanabe H., Itoh J., Novel DC to single-phase AC isolated current source inverter with power decou- pling capability for micro-inverter system, 2015 IEEE Energy Conversion Congress and Exposition, Montreal, Canada, pp. 158–165 (2015).

[15] Chakraborty S., Chattopadhyay S., An isolated Buck-Boost type high-frequency link photovoltaic microinverter, 2016 IEEE Applied Power Electronics Conference and Exposition, California, USA, pp. 3389–3396 (2016).

[16] Jiang J., Li Z., Chen D., A quasi single stage isolated Buck-Boost mode multi-input inverter, 2019 10th International Conference on Power Electronics and ECCE Asia, Busan, Korea, pp. 1–6 (2019).

[17] Baoge Z., Deyu H., Tianpeng W., Zhen Z., Donghao W., A novel two-phase interleaved parallel bi-bidrectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–234 (2021), DOI: 10.24425/aee.2021.136063.

[18] Hong F., Liu J., Ji B., Zhou Y., Wang J., Wang C., Single inductor dual Buck full-bridge inverter, IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869–4877 (2015),  DOI: 10.1109/tie.2015.2399280.

[19] Zhang L., Zhang T., Hao Y., Wang B., Two-stage dual-Buck grid-tied inverters with efficiency en-hancement, 2019 IEEE Applied Power Electronics Conference and Exposition, California, USA,  pp. 3251–3256 (2019).

[20] Jagan V., Kotturu J., Das S., Enhanced-Boost quasi-z-source inverters with two-switched impedance networks, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6885–6897 (2017), DOI: 10.1109/tie.2017.2688964.

[21] Zhu X., Zhang B., Qiu D., A high Boost active switched quasi-z-source inverter with low input current ripple, IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5341–5354 (2019), DOI: 10.1109/tii.2019.2899937.


 [22] Leonardo P. Sampaio, Moacyr A.G. de Brito, Luigi G. Junior, Single-phase current-source-Boost inverter for renewable energy sources, 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 1118–1123 (2011), DOI: 10.1109/ISIE.2011.5984201.

[23] Nattymol Y.J., Shanavas T.N., Power quality analysis of single-phase transformer-less Buck-Boost inverter for compressor load, 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India (2019), DOI: 10.1109/IN-COS45849.2019.8951345.

[24] Sreekanth T., Lakshmi Narasamma N., Mahesh K. Mishra, Sijo Augustine, A single stage cou- pled inductor based high gain DC-AC Buck-Boost inverter for photovoltaic (PV) applications, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA  (2015), DOI: 10.1109/pvsc.2015.7356269.


Go to article

Authors and Affiliations

Yiwen Chen
1
Sixu Luo
1
ORCID: ORCID
Zhiliang Huang
2
Jiahui Jiang
3
ORCID: ORCID

  1. Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, China
  2. Texas Instruments Semiconductor Technologies (Shanghai) Co., Ltd., China
  3. College of Electrical Engineering, Qingdao University, China

This page uses 'cookies'. Learn more