Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, quanizted multisine inputs for a maneuver with simultaneous elevator, aileron and rudder deflections are presented. The inputs were designed for 9 quantization levels. A nonlinear aircraft model was exited with the designed inputs and its stability and control derivatives were identified. Time domain output error method with maximum likelihood principle and a linear aircraft model were used to perform parameter estimation. Visual match and relative standard deviations of the estimates were used to validate the results for each quantization level for clean signals and signals with measurement noise present in the data. The noise was included into both output and input signals. It was shown that it is possible to obtain accurate results when simultaneous flight controls deflections are quantized and noise is present in the data.

Go to article

Authors and Affiliations

P. Lichota
Download PDF Download RIS Download Bibtex

Abstract

The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.

Go to article

Authors and Affiliations

W. Jakowluk
Download PDF Download RIS Download Bibtex

Abstract

The main goal of estimating models for industrial applications is to guarantee the cheapest system identification. The requirements for the identification experiment should not be allowed to affect product quality under normal operating conditions. This paper deals with ensuring the required liquid levels of the cascade system tanks using the model predictive control (MPC) method. The MPC strategy was extended with the Kalman filter (KF) to predict the system’s succeeding states subject to a reference trajectory in the presence of both process and measurement noise covariances. The main contribution is to use the application-oriented input design to update the parameters of the model during system degradation. This framework delivers the least-costly identification experiment and guarantees high performance of the system with the updated model. The methods presented are evaluated both in the experiments on a real process and in the computer simulations. The results of the robust MPC application for cascade system water levels control are discussed.
Go to article

Authors and Affiliations

Wiktor Jakowluk
1
ORCID: ORCID
Sławomir Jaszczak
2

  1. Bialystok University of Technology, Faculty of Computer Science, Wiejska 45A, 15-351 Białystok, Poland
  2. West Pomeranian University of Technology in Szczecin, Faculty of Computer Science and Information Technology, Żołnierska 49, ˙71-210 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The model predictive control (MPC) technique has been widely applied in a large number of industrial plants. Optimal input design should guarantee acceptable model parameter estimates while still providing for low experimental effort. The goal of this work is to investigate an application-oriented identification experiment that satisfies the performance objectives of the implementation of the model. A- and D-optimal input signal design methods for a non-linear liquid two-tank model are presented in this paper. The excitation signal is obtained using a finite impulse response filter (FIR) with respect to the accepted application degradation and the input power constraint. The MPC controller is then used to control the liquid levels of the double tank system subject to the reference trajectory. The MPC scheme is built based on the linearized and discretized model of the system to predict the system’s succeeding outputs with reference to the future input signal. The novelty of this model-based method consists in including the experiment cost in input design through the objective function. The proposed framework is illustrated by means of numerical examples, and simulation results are discussed.

Go to article

Authors and Affiliations

W. Jakowluk
M. Świercz

This page uses 'cookies'. Learn more