Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recently, Gunn, Allison and Abbott (GAA) [http://arxiv.org/pdf/1402.2709v2.pdf] proposed a new scheme to utilize electromagnetic waves for eavesdropping on the Kirchhoff-law-Johnson-noise (KLJN) secure key distribution. We proved in a former paper [Fluct. Noise Lett. 13 (2014) 1450016] that GAA’s mathematical model is unphysical. Here we analyze GAA’s cracking scheme and show that, in the case of a loss-free cable, it provides less eavesdropping information than in the earlier (Bergou)-Scheuer-Yariv mean-square-based attack [Kish LB, Scheuer J, Phys. Lett. A 374:2140-2142 (2010)], while it offers no information in the case of a lossy cable. We also investigate GAA’s claim to be experimentally capable of distinguishing—using statistics over a few correlation times only—the distributions of two Gaussian noises with a relative variance difference of less than 10-8. Normally such distinctions would require hundreds of millions of correlations times to be observable. We identify several potential experimental artifacts as results of poor KLJN design, which can lead to GAA’s assertions: deterministic currents due to spurious harmonic components caused by ground loops, DC offset, aliasing, non-Gaussian features including non-linearities and other non-idealities in generators, and the timederivative nature of GAA’s scheme which tends to enhance all of these artifacts.

Go to article

Authors and Affiliations

Hsien-Pu Chen
Laszlo B. Kish
Claes G. Granqvist
Download PDF Download RIS Download Bibtex

Abstract

We introduce two new Kirchhoff-law-Johnson-noise (KLJN) secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR-) KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random Resistor Random Temperature (RRRT-) KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at a non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.

Go to article

Authors and Affiliations

Laszlo B. Kish
Claes G. Granqvist
Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop ‒ i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol ‒ for secure key distribution leads to information theoretic security levels superior to those of today’s quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).

Go to article

Authors and Affiliations

Robert Mingesz
Laszlo Bela Kish
Zoltan Gingl
Claes-Göran Granqvist
He Wen
Ferdinand Peper
Travis Eubanks
Gabor Schmera
Download PDF Download RIS Download Bibtex

Abstract

We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme and a new transient protocol for practically-perfect security. While these practical improvements offer progressively enhanced security and/or speed for non-ideal conditions, the fundamental physical laws providing the security remain the same.

In the "intelligent" KLJN (iKLJN) scheme, Alice and Bob utilize the fact that they exactly know not only their own resistor value but also the stochastic time function of their own noise, which they generate before feeding it into the loop. By using this extra information, they can reduce the duration of exchanging a single bit and in this way they achieve not only higher speed but also an enhanced security because Eve’s information will significantly be reduced due to smaller statistics.

In the "multiple" KLJN (MKLJN) system, Alice and Bob have publicly known identical sets of different resistors with a proper, publicly known truth table about the bit-interpretation of their combination. In this new situation, for Eve to succeed, it is not enough to find out which end has the higher resistor. Eve must exactly identify the actual resistor values at both sides.

In the "keyed" KLJN (KKLJN) system, by using secure communication with a formerly shared key, Alice and Bob share a proper time-dependent truth table for the bit-interpretation of the resistor situation for each secure bit exchange step during generating the next key. In this new situation, for Eve to succeed, it is not enough to find out the resistor values at the two ends. Eve must also know the former key.

The remaining four KLJN schemes are the combinations of the above protocols to synergically enhance the security properties. These are: the "intelligent-multiple" (iMKLJN), the "intelligent-keyed" (iKKLJN), the "keyed-multiple" (KMKLJN) and the "intelligent-keyed-multiple" (iKMKLJN) KLJN key exchange systems.

Finally, we introduce a new transient-protocol offering practically-perfect security without privacy amplification, which is not needed in practical applications but it is shown for the sake of ongoing discussions.

Go to article

Authors and Affiliations

Laszlo Bela Kish

This page uses 'cookies'. Learn more