Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Inertial navigation is a device, which estimates its position, based on sensing external conditions (such as acceleration or angular velocity). It is widely used in variuos applications. Its presence in a drone vehicle for example, allows flight stabilization, by position estimation and feedback-based regulation algorithm execution. A smartphone makes a use of inertial navigation by detecting movement and flipping screen orientation. It is a ubiquitous part of many devices of everyday use, but before using filters and algorithms allowing to calculate the position, a calibration must first be applied to the device. This paper focuses on a separate calibration of each of the sensors - an accelerometer, gyroscope and magnetometer. The further step requires a cross–sensor calibration, and the third step is implementation of data filtration algotithm.
Go to article

Authors and Affiliations

Sławomir Niespodziany
Download PDF Download RIS Download Bibtex

Abstract

A research study aimed at developing a novel indoor positioning system is presented. The realized system prototype uses sensor fusion techniques to combine information from two sources: an in-house developed local Ultra-Wideband (UWB) radio-based ranging system and an inertial navigation system (INS). The UWB system measures the distance between two transceivers by recording the round-trip-time (RTT) of UWB radio pulses. Its principle of operation is briefly described, together with the main design features. Furthermore, the main characteristics of the INS and of the Extended Kalman Filter information fusion approach are presented. Finally, selected static and dynamic test scenario experimental results are provided. In particular, the advantages of the proposed information fusion approach are further investigated by means of a high dynamic test scenario.

Go to article

Authors and Affiliations

Alessio De Angelis
John Nilsson
Isaac Skog
Händel Peter
Paolo Carbone
Download PDF Download RIS Download Bibtex

Abstract

This paper presents integration of ultrasonic and inertial approaches in indoor navigation system. Ultrasonic navigation systems allow to obtain good results whilst there are at least three beacon transmitters in the range of mobile receiver, but in many situations placement of large number of transmitters is not economically justified. In such situations navigation must be aided by other technique. This paper describes research on supporting ultrasonic system by inertial system based on Magnetic, Angular Rate and Gravity sensor. This can measure current orientation of the receiver and allows to estimate the length of the path by pedometer functionality.

Go to article

Authors and Affiliations

Krzysztof Tokarz
Piotr Czekalski
Wojciech Sieczkowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of surface matching is to determine transformation parameters without known corresponding points for two data sets of spatial point coordinates obtained with use of different sensors. Instead of different features such as points of interest, lines, surface patches in the TIN (Triangle Irregular Network) or DEM model are used. The paper presents an approach of using inertial moments of TIN models generated from two data sets of same terrain for surface matching. The inertial moments could easily be calculated for each triangle in the TIN using formulae given. Three moment invariants/,./,,,,"/""'' that are used as the features of high level for surface matching are defined.
Go to article

Authors and Affiliations

Chinh Ke Luong
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns analytical considerations on a complex phenomenon which is diffusive-inertial droplet separation from the twophase vapour-liquid flow which occurs in many devices in the power industry (e.g. heat pumps, steam turbines, organic Rankine cycles, etc.). The new mathematical model is mostly devoted to the analysis of the mechanisms of diffusion and inertia influencing the distance at which a droplet separates from the two-phase flow and falls on a channel wall. The analytical model was validated based on experimental data. The results obtained through the analytical computations stay in a satisfactory agreement with available literature data.
Go to article

Bibliography

[1] Sedler B., Mikielewicz J.: A simplified analytical flow-boiling crisis mode. Trans. Inst. Fluid-Flow Mach. 76(1978), 3–10 (in Polish).
[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.
[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).
[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).
[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.
[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.
[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.
[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.
[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.
[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.
[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.
[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.
[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.
[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.
[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.
[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.
[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.
[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.
Go to article

Authors and Affiliations

Jarosław Mikielewicz
1
Oktawia Dolna
1
Roman Kwidziński
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Rat robots have great potential in rescue and search tasks because of their excellent motion ability. However, most of the current rat-robot systems relay on human guidance due to variable voluntary motor behaviour of rats, which limits their application. In this study, we developed a real-time system to detect a rat robot’s transient motion states, as the prerequisite for further study of automatic navigation. We built the detection model by using a wearable inertial sensor to capture acceleration and angular velocity data during the control of a rat robot. Various machine learning algorithms, including Decision Trees, Random Forests, Logistic Regression, and SupportVector Machines,were employed to performthe classification of motion states. This detection system was tested in manual navigation experiments, with detection accuracy achieving 96.70%. The sequence of transient motion states could be further used as a promising reference for offline behaviour analysis.
Go to article

Authors and Affiliations

Yuxin Chen
1
Haoze Xu
2 3
Wei Yang
1 4
Canjun Yang
1 4
Kedi Xu
2 5

  1. Zhejiang University, State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou, China
  2. Zhejiang University, Qiushi Academy for Advanced Studies (QAAS), Hangzhou, China
  3. Zhejiang University, Key Laboratory of Biomedical Engineering of Education Ministry, Hangzhou, China
  4. Zhejiang University, Ningbo Research Institute, Ningbo, China
  5. Zhejiang Lab, Hangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a new approach called the Predictive Kalman Filter (PKF) which predicts and compensates model errors of inertial sensors to improve the accuracy of static alignment without the use of external assistance. The uncertain model error is the main problem in the field as the Micro Electro Mechanical System (MEMS) inertial sensors have bias which change over time, and these errors are not all observable. The proposed filter determines an optimal equivalent model error by minimizing a quadratic penalty function without augmenting the system state space. The optimization procedure enables the filter to decrease both model uncertainty and external disturbances. The paper first presents the complete formulation of the proposed filter. Then, a nonlinear alignment model with a large misalignment angle is considered. Experimental results demonstrate that the new method improves the accuracy and rapidness of the alignment process as the convergence time is reduced from 550 s to 50 s, and the azimuth misalignment angle correctness is decreased from 52" 47" to 4" 0:02".
Go to article

Bibliography

[1] Britting, K. R. (1971). Inertial navigation systems analysis. Wiley Interscience.
[2] Chang, L., Li, J., & Li, K. (2016). Optimization-based alignment for strapdown inertial navigation system: Comparison and extension. IEEE Transactions on Aerospace and Electronic Systems, 52(4), 1697–1713. https://doi.org/10.1109/TAES.2016.130824
[3] Xue, H., Guo, X., & Zhou, Z. (2016). Parameter identification method for SINS initial alignment under inertial frame. Mathematical Problems in Engineering, 2016, 5301242. https://doi.org/10.1155/2016/5301242
[4] Wang, D., Dong, Y., Li, Q., Wu, J., & Wen, Y. (2018). Estimation of small UAV position and attitude with reliable in-flight initial alignment for MEMSinertial sensors. Metrology and Measurement Systems, 25(3), 603–616. https://doi.org/10.24425/123904
[5] Ghanbarpourasl, H. (2020). A new robust quaternion-based initial alignment algorithm for stationary strapdown inertial navigation systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(12), 1913–1925. https://doi.org/10.1177/0954410020920473
[6] Guo, S., Chang, L., Li, Y., & Sun, Y. (2020). Robust fading cubature Kalman filter and its application in initial alignment of SINS. Optik, 202, 163593. https://doi.org/10.1016/j.ijleo.2019.163593
[7] Zhang, T., Wang, J., Jin, B., & Li, Y. (2019). Application of improved fifth-degree cubature Kalman filter in the nonlinear initial alignment of strapdown inertial navigation system. Review of Scientific Instruments, 90(1), 015111. https://doi.org/10.1063/1.5061790
[8] Xing, H., Chen, Z.,Wang, C., Guo, M., & Zhang, R. (2019). Quaternion-based Complementary Filter for Aiding in the Self-Alignment of the MEMS IMU. 2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), USA, 1–4. https://doi.org/10.1109/ISISS.2019.8739728
[9] Yang, B., Xu, X., Zhang, T., Sun, J., & Liu, X. (2017). Novel SINS initial alignment method under large misalignment angles and uncertain noise based on nonlinear filter. Mathematical Problems in Engineering, 2017, 5917917. https://doi.org/10.1155/2017/5917917
[10] Sun, J., Xu, X., Liu, Y., Zhang, T., & Li, Y. (2015). Initial alignment of large azimuth misalignment angles in SINS based on adaptive UPF. Sensors, 15(9), 21807–21823. https://doi.org/10.3390/s150921807
[11] Han, H., Wang, J., & Du, M. (2017). A fast SINS initial alignment method based on RTS forward and backward resolution. Journal of Sensors, 2017, 7161858. https://doi.org/10.1155/2017/7161858
[12] Kaygısız, B. H., & Sen, B. (2015). In-motion alignment of a low-cost GPS/INS under large heading error. The Journal of Navigation, 68(2), 355–366. https://doi.org/10.1017/S0373463314000629
[13] Xia, X.,&Sun, Q. (2018). Initial alignment algorithm based on theDMCSmethod in single-axis RSINS with large azimuth misalignment angles for submarines. Sensors, 18(7), 1807–2123. https://doi.org/10.3390/s18072123
[14] Li, J., Gao, W., Zhang, Y., & Wang, Z. (2018). Gradient Descent Optimization-Based Self-Alignment Method for Stationary SINS. IEEE Transactions on Instrumentation and Measurement, 68(9), 3278– 3286. https://doi.org/10.1109/TIM.2018.2878071
[15] Camacho, E. F., Ramírez, D. R., Limón, D., De La Peña, D. M., & Alamo, T. (2010). Model predictive control techniques for hybrid systems. Annual Reviews in Control, 34(1), 21–31. https://doi.org/10.1016/j.arcontrol.2010.02.002
[16] Titterton, D., Weston, J. L., & Weston, J. (2004). Strapdown inertial navigation technology. IET. https://doi.org/10.1049/PBRA017E
[17] Analog Devices. (2018). Tactical Grade Ten Degrees of Freedom Inertial Sensor – ADIS16488A. [Datasheet, Rev. F]. https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16488A.pdf
Go to article

Authors and Affiliations

Hassan Majed Alhassan
1
Nemat Allah Ghahremani
1

  1. Malek Ashtar University of Technology, Faculty of Electrical & Computer Engineering, Tehran 15875-1774, Iran
Download PDF Download RIS Download Bibtex

Abstract

Low-cost Micro-Electromechanical System (MEMS) gyroscopes are known to have a smaller size, lower weight, and less power consumption than their more technologically advanced counterparts. However, current low-grade MEMS gyroscopes have poor performance and cannot compete with quality sensors in high accuracy navigational and guidance applications. The main focus of this paper is to investigate performance improvements by fusing multiple homogeneous MEMS gyroscopes. These gyros are transformed into a virtual gyro using a feedback weighted fusion algorithm with dynamic sensor bias correction. The gyroscope array combines eight homogeneous gyroscope units on each axis and divides them into two layers of differential configuration. The algorithm uses the gyroscope array estimation value to remove the gyroscope bias and then correct the gyroscope array measurement value. Then the gyroscope variance is recalculated in real time according to the revised measurement value and the weighted coefficients and state estimation of each gyroscope are deduced according to the least square principle. The simulations and experiments showed that the proposed algorithm could further reduce the drift and improve the overall accuracy beyond the performance limitations of individual gyroscopes. The maximum cumulative angle error was - 2:09 degrees after 2000 seconds in the static test, and the standard deviation (STD) of the output fusion value of the proposed algorithm was 0.006 degrees/s in the dynamic test, which was only 1.7% of the STD value of an individual gyroscope.
Go to article

Authors and Affiliations

Ding Yuan
1
Yongyuan Qin
1
Xiaowei Shen
2
Zongwei Wu
2

  1. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
  2. Xi’an Research Institute of High Technology, Hongqing Town, Xi’an 710025, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of calculation of position deviations from a theoretical, nominally rectilinear trajectory for a SAR imaging system installed on board of UAV. The UAV on-board system consists of a radar sensor, an antenna system, a SAR processor and a navigation system. The main task of the navigation part is to determine the vector of differences between the theoretical and the measured trajectories of UAV center of gravity. The paper includes chosen results of experiments obtained during ground and flight tests.

Go to article

Authors and Affiliations

Michał Łabowski
Piotr Kaniewski
Stanisław Konatowski
Download PDF Download RIS Download Bibtex

Abstract

To reduce the influence of the static unbalance on an infrared missile guidance system, a new static unbalance measure system for the gimbals axes has been developed. Considering the coupling effects caused by a mass eccentricity, the static balance condition and measure sequence for each gimbal axis are obtained. A novel static unbalance test approach is proposed after analyzing the dynamic model of the measured gimbal axis. This approach is to drive the measured gimbal axis to do sinusoidal reciprocating motion in a small angle and collect its drive currents in real time. Then the static unbalance of the measured gimbal axis can be obtained by the current multi-cycle integration. Also a measuring system using the proposed approach has been developed. A balanced simulator is used to verify the proposed approach by the load and repeatability tests. The results show the proposed approach enhances the efficiency of the static unbalance measurement, and the developed measuring system is able to achieve a high precision with a greater stability.
Go to article

Authors and Affiliations

Hui Yang
Yan Zhao
Min Li
Falin Wu
Download PDF Download RIS Download Bibtex

Abstract

A method for evaluating the dynamic characteristics of force transducers against small and short-duration impact forces is developed. In this method, a small mass collides with a force transducer and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used to achieve linear motion with sufficiently small friction acting on the mass, which is the moving part of the bearing. Small and short-duration impact forces with a maximum impact force of approximately 5 N and minimum half-value width of approximately 1 ms are applied to a force transducer and the impulse responses are evaluated.

Go to article

Authors and Affiliations

Mitra Djamal
Kazuhide Watanabe
Kyohei Irisa
Irfa Aji Prayogi
Akihiro Takita
Takao Yamaguchi
Yusaku Fujii
Download PDF Download RIS Download Bibtex

Abstract

This article presents a wearable system that localizes people in the indoor environment, using data from inertial sensors. The sensors measure the parameters of human motion, tracking the movements of the torso and foot. For this purpose, they were integrated with shirt and the shoe insole. The values of acceleration measured by the sensors are sent via Bluetooth to a smartphone. The localization algorithm implemented on the smartphone, presented here, merges data from the shirt and the shoe to track the steps made by the user and filter out the localization errors caused by movements the shirt and torso. The experimental verification of the algorithm is also presented.

Go to article

Authors and Affiliations

Jaroslaw Kawecki
Pawel Oleksy
Lukasz Januszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Rotation modulation can significantly improve the navigation accuracies of an inertial navigation system (INS) and a strap-down configuration dominating in this type of INS. However, this style of construction is not a good scheme since it has no servo loop to counteract a vehicle manoeuvre. This paper proposes a rotary upgrading method for a rotational INS based on an inertially stabilized platform. The servo control loop is reconstructed on a four-gimbal platform, and it has the functions of providing both a level stability relative to the navigation frame and an azimuth rotation at a speed of 1:2◦/s. With the platform’s rotation, the observability and the convergence speed of the estimation for the initial alignment can be improved, as well as the biases of the gyroscopes and accelerometers be modulated into zero-mean periodic values. An open-loop initial alignment method is designed, and its detailed algorithms are delivered. The experiment result shows that the newly designed rotational INS has reached an accuracy of 0.38 n mile/h (CEP, circular error probable). The feasibility and engineering applicability of the designed scheme have been validated.

Go to article

Authors and Affiliations

Rong Guo
Xueyun Wang
Jingjuan Zhang
Tianxiao Song
Download PDF Download RIS Download Bibtex

Abstract

The article presents a comprehensive study of a visual-inertial simultaneous localization and mapping (SLAM) algorithm designed for aerial vehicles. The goal of the research is to propose an improvement to the particle filter SLAM system that allows for more accurate and robust navigation of unknown environments. The authors introduce a modification that utilizes a homography matrix decomposition calculated from the camera frame-to-frame relationships. This procedure aims to refine the particle filter proposal distribution of the estimated robot state. In addition, the authors implement a mechanism of calculating a homography matrix from robot displacement, which is utilized to eliminate outliers in the frame-to-frame feature detection procedure. The algorithm is evaluated using simulation and real-world datasets, and the results show that the proposed improvements make the algorithm more accurate and robust. Specifically, the use of homography matrix decomposition allows the algorithm to be more efficient, with a smaller number of particles, without sacrificing accuracy. Furthermore, the incorporation of robot displacement information helps improve the accuracy of the feature detection procedure, leading to more reliable and consistent results. The article concludes with a discussion of the implemented and tested SLAM solution, highlighting its strengths and limitations. Overall, the proposed algorithm is a promising approach for achieving accurate and robust autonomous navigation of unknown environments.
Go to article

Authors and Affiliations

Paweł Leszek Słowak
1
Piotri Kaniewsk
1

  1. Military University of Technology, Faculty of Electronics, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Monitoring head movements is important in many aspects of life from medicine and rehabilitation to sports, and VR entertainment. In this study, we used recordings from two sensors, i.e. an accelerometer and a gyroscope, to calculate the angles of movement of the gesturing person’s head. For the yaw motion, we proposed an original algorithm using only these two inertial sensors and the detected motion type obtained from a pre-trained SVM classifier. The combination of the gyroscope data and the detected motion type allowed us to calculate the yaw angle without the need for other sensors, such as a magnetometer or a video camera. To verify the accuracy of our algorithm, we used a robotic arm that simulated head gestures where the angle values were read out from the robot kinematics. The calculated yaw angles differed from the robot’s readings with a mean absolute error of approx. 1 degree and the rate of differences between these values exceeding 5 degrees was significantly below 1 percent except for one outlier at 1.12%. This level of accuracy is sufficient for many applications, such as VR systems, human-system interfaces, or rehabilitation.
Go to article

Authors and Affiliations

Anna Borowska-Terka
1
Paweł Strumiłło
1

  1. Łódz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering, Institute of Electronics, Al. Politechniki 10, 93-590 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Background: The aim of the study was to answer two questions: 1 – Can data processing algorithms ensure sufficient accuracy for estimating human body pose via wearable systems? 2 – How to process the IMU sensor data to obtain the most accurate information on the human body pose? To answer these questions, the authors evaluated proposed algorithms in terms of accuracy and reliability. Methodology: data acquisition was performed with tested IMU sensors system mounted onto a Biodex System device. Research included pendulum movement with seven angular velocities (10-120°/s) in five angular movement ranges (30-120°). Algorithms used data from accelerometers and gyroscopes and considered complementary and/or Kalman filters with adjusted parameters. Moreover, angular velocity registration quality was also taken into consideration. Results: differences between means for angular velocity were 0.55÷1.05°/s and 1.76÷3.11%. In the case of angular position relative error of means was 4.77÷10.84%, relative error of extreme values was 2.15÷4.81% and Spearman’s correlation coefficient was 0.74÷0.89. Conclusions: Algorithm calculating angles based on acceleration-derived quaternions and with implementation of Kalman filter was the most accurate for data processing and can be adapted for future work with IMU sensors systems, especially in wearable devices that are designated to support human in daily activity.
Go to article

Authors and Affiliations

Aleksandra Szczerba
1
ORCID: ORCID
Piotr Prochor
1
ORCID: ORCID
Szczepan Piszczatowski
1
ORCID: ORCID

  1. Department of Biomaterials and Medical Devices Engineering, Institute of Biomedical Engineering, Faculty of Mechanical Engineering, BialystokUniversity of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.

Go to article

Authors and Affiliations

Piotr Kaniewski
Rafał Gil
Stanisław Konatowski

This page uses 'cookies'. Learn more