Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The pole phase modulation (PPM) technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM) with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM). The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

Go to article

Authors and Affiliations

Huijuan Liu
Jun Wang
Zhenyang Zhang
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an augmented speed control scheme of dual induction motors fed by a five-leg voltage source inverter (VSI) with a common/shared-leg. An additional control loop is proposed here and based on the mutual flux angle – the difference between flux angular positions of the IMs. The main purpose of this research is to minimize the energy losses in the common inverter leg by controlling the mutual flux angle, at equal angular speeds of both motors. Simulation and experimental studies were carried out and the effectiveness of the proposed control method was proven. The PLECS software package was used for the simulation tests. The laboratory prototypewas prepared for the experimental validation. All results were provided and discussed in this paper.
Go to article

Authors and Affiliations

Dmytro Kondratenko
1
ORCID: ORCID
Arkadiusz Lewicki
1
ORCID: ORCID
Krzysztof Łuksza
1
ORCID: ORCID

  1. Faculty of Electrical and Control Engineering, Gdansk University of Technology, 11/12 Narutowicza str., 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a novel model predictive flux control (MPFC) scheme for three-level inverter-fed sensorless induction motor drive operated in a wide speed region, including field weakening. The novelty of the proposed drive lies in combining in one system a number of new solutions providing important features, among which are: very high dynamics, constant switching frequency, no need to adjust weighting factors in the predictive cost function, adaptive speed and parameter (stator resistance, main inductance) estimation. The theoretical principles of the optimal switching sequence predictive stator flux control (OSS-MPFC) method used are also discussed. The method guarantees constant switching frequency operation of a three-level inverter. For speed estimation, a compensated model reference adaptive system (C-MRAS) was adopted while for IM parameters estimation a Q-MRAS was developed. Simulation and experimental results measured on a 50 kW drive that illustrates operation and performances of the system are presented. The proposed novel solution of a predictive controlled IM drive presents an attractive and complete algorithm/system which only requires the knowledge of nominal IM parameters for proper operation.

Go to article

Authors and Affiliations

D. Stando
M.P. Kazmierkowski

This page uses 'cookies'. Learn more