Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study attempts to investigate the influence of severe plastic deformation (SPD in the hydrostatic extrusion (HE) process on the anisotropy of the structure and mechanical properties of the AA 6060 alloy. Material in isotropic condition was subjected to a single round of hydrostatic extrusion with three different degrees of deformation (ε  = 1.23, 1.57, 2.28). They allowed the grain size to be fragmented to the nanocrystalline level. Mechanical properties of the AA 6060 alloy, examined on mini-samples, showed an increase in ultimate tensile strength (UTS) and yield strength (YS) as compared to the initial material. Significant strengthening of the material results from high grain refinement in transverse section, from »220 μm in the initial material to »300 nm following the HE process. The material was characterized by the occurrence of structure anisotropy, which may determine the potential use of the material. Static tensile tests of mini-samples showed »10% anisotropy of properties between longitudinal and transverse cross-sections. In the AA6060 alloy, impact anisotropy was found depending on the direction of its testing. Higher impact toughness was observed in the cross-section parallel to the HE direction. The results obtained allow to analyze the characteristic structure created during the HE process and result in more efficient use of the AA 6060 alloy in applications.

Go to article

Authors and Affiliations

S. Przybysz
M. Kulczyk
W. Pachla
J. Skiba
M. Wróblewska
J. Mizera
D. Moszczyńska
Download PDF Download RIS Download Bibtex

Abstract

The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
Go to article

Authors and Affiliations

Sylwia Przybysz
1
Mariusz Kulczyk
1
ORCID: ORCID
Jacek Skiba
1
Monika Skorupska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presented results describe the effect of severe plastic deformation on the structure and mechanical properties of AA5083 and AA5754 alloys. Both materials were subjected to single hydrostatic extrusion (HE) and cumulative hydrostatic extrusion in the case of AA5083 and a combination of plastic deformation by equal-channel angular pressing (ECAP) with the next HE for AA5754. After the deformation, both alloys featured a homogeneous and finely divided microstructure with average grain size deq = 140 nm and 125 nm for AA5083 and AA5754, respectively. The selection of plastic forming parameters enabled a significant increase in the UTS tensile strength and YS yield stress in both alloys – UTS =  510 MPa and YS = 500 MPa for alloy AA5083 after cumulative HE, and 450 MPa and 440 MPa for alloy AA5754 after the combination of ECAP and HE, respectively. It has been shown on the example of AA5083 alloy that after the deformation the threads of the fasteners made of this material are more accurate and workable at lower cutting speeds, which saves the cutting tools. The resultant properties of AA5083 and AA5754 alloys match the minimum requirements for the strongest Al-Zn alloys of the 7xxx series, which, however, due to the considerably lower corrosion resistance, can be replaced in many responsible structures by the AA5xxx series Al-Mg alloys presented in this paper.

Go to article

Authors and Affiliations

M. Kulczyk
J. Skiba
W. Pachla
J. Smalc-Koziorowska
S. Przybysz
M. Przybysz
Download PDF Download RIS Download Bibtex

Abstract

The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
Go to article

Authors and Affiliations

Mariusz Kulczyk
1
ORCID: ORCID
Monika Skorupska
1
Jacek Skiba
1
Sylwia Przybysz
1
Julita Smalc-Koziorowska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland

This page uses 'cookies'. Learn more