Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Irrigation of cultivated plants can be a source of toxic lithium to plants. The data on the effect of lithium uptake on plants are scant, that is why a research was undertaken with the aim to determine maize ability to bioaccumulate lithium. The research was carried out under hydroponic conditions. The experimental design comprised 10 concentrations in solution differing with lithium concentrations in the aqueous solution (ranging from 0.0 to 256.0 mg Li ∙ dm-3 of the nutrient solution). The parameters based on which lithium bioretention by maize was determined were: the yield, lithium concentration in various plant parts, uptake and utilization of this element, tolerance index (TI) and translocation factor (TF), metal concentrations in the above-ground parts index (CI) and bioaccumulation factor (BAF). Depression in yielding of maize occurred only at the highest concentrations of lithium. Lithium concentration was the highest in the roots, lower in the stems and leaves, and the lowest in the inflorescences. The values of tolerance index and EC50 indicated that roots were the most resistant organs to lithium toxicity. The values of translocation factor were indicative of intensive export of lithium from the roots mostly to the stems. The higher uptake of lithium by the above-ground parts than by the roots, which primarily results from the higher yield of these parts of the plants, supports the idea of using maize for lithium phytoremediation.

Go to article

Authors and Affiliations

Jacek Antonkiewicz
Czesława Jasiewicz
Małgorzata Koncewicz-Baran
Renata Bączek-Kwinta
Download PDF Download RIS Download Bibtex

Abstract

A hydroponic trial was conducted to study the effect of chloride salinity in simulated effluent on Cd accumulation by tobacco. Leaf surface area (LSA) and root surface area (RSA) measurements were incorporated as possible determinants of Cd uptake rate by plants. Results showed that individual plant differences in Cd content were normalized when including RSA to express Cd uptake rates by plants but not including LSA. A biotic ligand model (BLM) fitted to predict Cd uptake, estimated active and almost linear uptake of the free Cd2+ ion by tobacco plants, while virtually no changes in the chloride complex (CdCl+) uptake were predicted, presumably due to a rapid saturation of the hypothetical root sorption sites at the concentrations used in this trial. Nicotiana tabacum var. K326 is evidenced to be a species potentially suitable for biological wastewater treatment using rhizofiltration at concentrations commonly found in salt-affected wastewater, with high Cd accumulation (185 to 280 mg/kgd.m.) regardless of water salinity and tolerance up to 80 mmol/L NaCl.
Go to article

Bibliography

1. Berkelaar, E., & Hale, B. (2000). The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars, Canadian Journal of Botany, 78, 3, pp. 381-387. DOI: 10.1139/b00-015
2. Berkelaar, E., & Hale, B. (2003). Cadmium accumulation by durum wheat roots in ligand buffered hydroponic culture: uptake of Cd ligand complexes or enhanced diffusion? Canadian Journal of Botany, 81, 7, pp. 755-763. DOI: 10.1139/b03-061
3. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sedime nt Contamination: An International Journal, 23, (6), 628-640.
4. Candelario-Torres, M.F. (2014). Rhizofiltration of metal polluted effluents by Nicotiana tabacum, M.Sc. diss., Universidad Autonoma de Nuevo Leon (in Spanish), pp. 1-63.
5. Durand, T.C., Hausman, J.F., Carpin S., Alberic, P., Baillif, P., Label, P. & Morabito, D. (2010). Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba, Biologia Plantarum, 54, 1, pp. 191-194. https://doi.org/10.1007/s10535-010-0033-z
6. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sediment Contamination: An International Journal , 23, 6, pp. 628-640. https://doi.org/10.1080/15320383.2014.857640
7. Erdem, H., Kinay, A., Öztürk, M. & Tutuş, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars, Journal of Food, Agriculture and Environment, 10, 1, pp. 965-969.
8. Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, Journal of Plant Growth Regulation, 31, 3, pp. 292-308. DOI: 10.1007/s00344-011-9239-3
9. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresoure Technology, 99, 9, pp. 3864-3870. DOI: 10.1016/j.biortech.2007.06.047
10. He, J.G., Liu, F., Han, B.P., Zhao, B.W. & Liu, J. (2011a). Treatment of tannery wastewater with salt tolerant bacteria basing on different culture mediums, Advanced Materials Research , 403-408, 1, pp. 625-633. DOI: 10.4028/www.scientific.net/AMR.403-408.625
11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., & Luo, Z.B. (2011b). Net cadmium flux and accumulation reveal tissue‐specific oxidative stress and detoxification in Populus × canescens, Physiologia Plantarum, 143, 1, pp. 50-63. DOI: 10.1111/j.1399-3054.2011.01487.x
12. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., & Luo, Z.B. (2013). A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens, Plant Physiology, 162, 1, pp. 424-439. DOI: 10.1104/pp.113.215681
13. He, J., Li, H., Ma, C., Zhang, Y., Polle, A., Rennenberg, H. & Luo, Z.B. 2015. Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar, New Phytologist, 205, 1, pp. 240-254. DOI: 10.1111/nph.13013
14. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 6951, pp. 901-908. https://doi.org/10.1038/nature01843
15. Li, X., Ding, F., Lo, P. & Sin, S. (2002). Electrochemical disinfection of saline wastewater effluent, Journal of Environmental Engineering, 128, 8, pp. 697-704. DOI: 10.1061/(ASCE)0733-9372(2002)128:8(697)
16. Lin, B., Gao, H., & Lai, H. (2016). Spatial Characterization of Arsenic, Cadmium, and Lead Concentrations in Tobacco Leaves and Soil, Analytical Letters, 49, 10, pp. 1622-1630. DOI: 10.1080/00032719.2015.1113419
17. López-Chuken, U.J. & Young, S.D. (2005). Plant Screening of Halophyte Species for Cadmium Phytoremediation, Zeitschrift für Naturforschung C, 60, 3-4, pp. 236-243. PMID:15948589
18. López-Chuken, U.J. & Young, S.D. (2010). Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity, Journal of Environmental Sciences, 22, 7, pp. 1080-1085. DOI: 10.1016/S1001-0742(09)60220-5
19. López-Chuken, U.J., Young, S.D. & Guzman-Mar, J.L. (2010). Evaluating a ´biotic ligand model´ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity, Environmental Technology, 31, 3, pp. 307-318. DOI: 10.1080/09593330903470685
20. López-Chuken, U.J., López-Domínguez, U., Parra-Saldivar, R., Moreno, E., Hinojosa, L., Guzmán-Mar, J.L. & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced Cd uptake in (saline) agriculture: modeling Cd uptake by maize and tobacco, International Journal of Environmental Science and Technology, 9, 1, pp. 69-77. DOI: 10.1007/s13762-011-0018-2
21. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M. & Wagner, G.J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Advances in Agronomy, 83, 1, pp. 111-118. DOI: 10.1016/S0065-2113(04)83003-7
22. Pandey, S.K. & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation, Journal of Botany, 2011, pp. 1-6. DOI: 10.1155/2011/658240
23. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, The Plant Journal, 32, 4, pp. 539-548. DOI: 10.1046/j.1365-313X.2002.01442.x
24. Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J. & Kryński, K. (2004). Phytoextraction crop disposal--an unsolved problem, Environmental Pollution, 128, 3, pp. 373-379. DOI: 10.1016/j.envpol.2003.09.012
25. Tipping, E., Rey-Castro, C., Bryan, S.E. & Hamilton-Taylor, J. (2002). “Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimoca et Cosmochimica Acta, 66, 18, pp. 3211-3224. DOI: 10.1016/S0016-7037(02)00930-4
26. United Nations. (2013). “The Eight Millenium Development Goals.” Accesed 29 February 2016. https://www.un.org/millenniumgoals/bkgd.shtml
27. Wang, X., Cheng, S., Zhang, X., Li, X. &. Logan, B.E. (2005). Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, 21, pp. 13900-13906. DOI: 10.1016/j.ijhydene.2011.03.052
28. Wani, P.A., Khan, M.S. & Zaidi, A. (2005). Toxic effects of heavy metals on germination and physiological processes of plants.” [In:] Toxicity of heavy metals to legumes and bioremediation, edited by Zaidi, A., Wani, P.A. & Khan M.S. Springer, Netherlands, pp. 45-66. DOI: 10.1007/978-3-7091-0730-0
29. Weggler-Beaton, K., McLaughlin, M.J. & Graham, R.D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Australian Journal of Soil Research, 38, 1, pp. 37-45. DOI: 10.1071/SR99028
30. Xu, Z. & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, Journal of Experimental Botany, 59, 12, pp. 3317-3325.DOI: 10.1093/jxb/ern185
31. Yadav, A. K., Pathak, B. & Fulekar, M.H. (2015). Rhizofiltration of Heavy Metals (Cadmium, Lead and Zinc) From Fly Ash Leachates Using Water Hyacinth (Eichhornia crassipes), International Journal of Environment, 4, 1, pp. 179-196. DOI: 10.3126/ije.v4i1.12187
Go to article

Authors and Affiliations

Ulrico Javier Lopez-Chuken
1
Icela Dagmar Barceló-Quintal
2
Evangelina Ramirez-Lara
1
Maria Elena Cantu-Cardenas
1
Juan Francisco Villarreal-Chiu
1
Julio Cesar Beltran-Rocha
1
Claudio Guajardo-Barbosa
1
Carlos Jesus Castillo-Zacarias
1 3
Sergio Gomez-Salazar
4
Eulogio Orozco-Guareno
4

  1. Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
  2. Basic Science and Engineering Division, Metropolitan Autonomus University – Azcapotzalco Unit, Mexico
  3. Monterrey Technological Institute of Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Mexico
  4. Exact Sciences and Engineering University Center (CUCEI).University of Guadalajara, Mexico
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to analyze the effi ciency and reliability of pollutants removal (total suspended solids – TSS, BOD5, COD) in a collective wastewater treatment plant with activated sludge and hydroponic lagoon during its long term operation. The tested object was designed to treat wastewater in flowing through the sewerage system and wastewater delivered by the septic truck. The projected capacity of the treatment plant was 1200 m3∙d-1. The technological system for wastewater treatment consisted of a mechanical part, a flowing biological reactor working according to the BARDENPHO process, a secondary settling tank and a hydroponic lagoon. The efficiency and reliability of pollutants removal in the analyzed treatment plant were assessed on the basis of the data concerning influent and effluent wastewater collected during the years 2011–2018. On the basis of the measurements results, there were determined characteristic values of the selected pollution indicators in wastewater and the average efficiency of pollutants removal. The technological reliability of the wastewater treatment plant was assessed for the basic pollution parameters (BOD5, COD, TSS) in accordance with the elements of the Weibull’s reliability theory, with regard to normative values of the indicators specified in the Regulation of the Minister of Environment. The analysis was carried out using the Statistica 13.1 software. It was proved that in the wastewater treatment plant with an activated sludge and hydroponic lagoon the level of organic pollutants removal expressed by BOD5 was on average 99.5%, COD – 98.1% and TSS – 99.4%. The technological reliability of the system was 100% in terms of the removal of pollutants from the basic group, which means that during the long term operation (8 years) it provided failure-free operation and guaranteed the fulfillment of the requirements that can be found in the Polish law regulations concerning the analyzed pollutants.

Go to article

Authors and Affiliations

Karolina Jóźwiakowska
1
Michał Marzec
2

  1. Student, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Poland
  2. Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Poland

This page uses 'cookies'. Learn more